ENVIRONMENTAL INVESTIGATION REPORT

Performed For
SACHNOFF & WEAVER, LTD AND THE MUNIZ
SUB-GROUP

On The Property Occupied By Magnetrol International, Inc. 5300 Belmont Road Downers Grove, Illinois

May 18, 2006

RECEIVED

MAY 2 2 2006 FED. EX

KARAGANIS, WHITE & MAGELLTD.

celmor

1520 Kensington Road, Suite 204
Oak Brook, Illinois 60523-2139
Phone 630-993-2100
Fax 630-993-9017
www.mostardiplattenv.com

ENVIRONMENTAL INVESTIGATION REPORT

Performed For

SACHNOFF & WEAVER, LTD AND THE MUNIZ SUB-GROUP

On The Property Occupied By Magnetrol International, Inc. 5300 Belmont Road Downers Grove, Illinois May 18, 2006

© Copyright 2006 All rights reserved in Mostardi Platt Environmental

MOSTARDI PLATT PROJECT M061401

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY	1
2.0 INTRODUCTION 2.1 Purpose 2.2 Authorization 2.3 Standard of Care 2.4 Limitation of Use	3 3
3.0 PROPERTY DESCRIPTION 3.1 Property Location and Description 3.2 Topography and Surface Water Runoff.	. 4
4.0 FIELD INVESTIGATION 4.1 Utility Clearance 4.2 Field Investigation. 4.2.1 Soil Boring Investigation. 4.2.2 Soil Sampling Procedures 4.2.3 On-Site Physical Analysis 4.2.4 Groundwater Monitoring Well Investigation. 4.3 Property Soil Conditions. 4.3.1 Soil Strata 4.3.2 Soil with Apparent Stains and/or Odors.	4 5 5 6 7 8 8
4.4 Subsurface Water	.9 10 11 11 11 11 12 12 12
6.0 CONCLUSIONS	13
APPENDICES	15

LIST OF TABLES

Table 1 Soil Boring Location Summary	. 5
Table 2 Summary Of Apparent Stains And/Or Odors	
Table 3 Laboratory Analysis Selection Summary	
1 abic of Laboratory Arrarysis detection distributy,	

LIST OF FIGURES

Figure 1 Property Location Diagram
Figure 3 Property Configuration Diagram
Figure 4 United States Geological Survey 7.5 Minute Topographic Map
Figure 5 Soil Boring and Monitoring Well Location Diagram

1520 Kensington Road, Suite 204
Oak Brook, Illinois 60523-2139
Phone 630-993-2100
Fax 630-993-9017
www.mostardiplatteny.com

ENVIRONMENTAL INVESTIGATION REPORT

Performed For

SACHNOFF & WEAVER LTD. AND THE MUNIZ SUB-GROUP

On The Property Occupied By
Magnetrol Interanational, Inc.
5300 Belmont Road
Downers Grove, Illinois
May 18, 2006

1.0 EXECUTIVE SUMMARY

Sachnoff & Weaver, Ltd., on behalf of The Muniz Sub-Group¹ (Client), retained MOSTARDI PLATT ENVIRONMENTAL (MPE) to perform an environmental investigation on the property occupied by Magnetrol International, Inc. (Magnetrol) located at 5300 Belmont Road in Downers Grove, Illinois (the Property) (Figures 1 and 2, Appendix A).

The Property is located in the Ellsworth Industrial Park area where the United States Environmental Protection Agency (USEPA) has investigated facilities for releases of chemicals into the subsurface. Magnetrol, the Property owner, has not been investigated for the potential presence of impact by volatile organic compounds (VOCs). MPE performed this environmental subsurface investigation to investigate if impact is present at the Property.

In order to investigate the Property for the presence of VOCs, MPE:

- Performed a visual inspection
- Collected subsurface soil samples
- Collected subsurface water samples
- Performed laboratory analyses of soil and or water

Specifically, MPE performed 11 Geoprobe[®] soil borings and three hollow stem auger soil borings from April 10 through 14, 2006. The three hollow stem auger soil borings were

¹ Renard Corporation; Ames Supply Co.; The Morey Corporation; Scot Incorporated; Lindey Manufacturing Co.; Precision Band Products, Inc.; Tricom Industries, Inc.; Bison Gear & Engineering Corp; Arrow Gear Company; Principal Manufacturing Corp.; and Lovejoy, Inc.

completed as temporary monitoring wells. MPE collected subsurface water samples from two of the three temporary monitoring wells on April 12, 2006. MPE submitted selected soil and subsurface water samples for analysis of VOCs.

Based on our investigation, we have identified the following conclusions:

- Soil at the Property consists primarily of clay and sand, in certain soil borings, from the ground surface to a depth of at least 30 feet below ground surface (bgs).
- Soil from soil boring GP-1 (4-12) exhibited apparent heating oil odors. Soil from soil boring GP-2 (2-4) exhibited an apparent sweet odor and GP-9 (0.25-0.75) apparent petroleum odors.
- MPE encountered subsurface water in soil borings GP-4, HS-2, and HS-3 at the Property. MPE also noted several soil borings with moist zones at varying soil intervals.
- Laboratory analysis identified detectable concentrations of certain VOCs in soil samples collected from the Property. The detected compounds are commonly found in certain solvents.
- Soil borings GP-2 (0-4), GP-3 (6-8), GP-5 (4-6), and GP-11 (0-2) exhibited concentrations of certain VOCs that exceed TACO Tier 1 soil remediation objectives for commercial/industrial properties, construction workers, and/or the soil component of the groundwater exposure route for Class I and/or Class II groundwater. Soil borings GP-4 (4-8), GP-7 (0-2), GP-8 (0-2 and 6-8) exhibited detectable concentrations of VOCs; however, the detected concentrations did not exceed applicable TACO Tier 1 soil remediation objectives.
- Water samples collected from MW-2 and MW-3 did not exhibit detectable concentrations of VOCs.
- Trip blanks that accompanied samples in the cooler did not exhibit detectable
 concentrations of VOCs indicating that the presence of VOCs in certain soil
 samples was not a result of cross contamination in the cooler.
- The extent of soil impacted by VOCs detected in the subsurface at the Property was not determined during this investigation.

The aforementioned conclusions suggest that certain locations on the Property are impacted with certain VOCs that exceed applicable soil remediation objectives. In addition, the horizontal and vertical extent of impact by the identified VOCs was not completed as part of this investigation.

2.0 INTRODUCTION

2.1 Purpose

MPE performed this investigation in an effort to identify the presence of VOCs from the historical use of solvents at the Property, if any, in soil and/or subsurface water relative to the TACO² Tier 1 remediation objectives.

2.2 Authorization

MPE began this environmental subsurface investigation following verbal authorization received from Mr. Edward V. Walsh, III of Sachnoff & Weaver, Ltd on behalf of the Client on April 4, 2006. MPE performed this environmental investigation subject to the terms and conditions of MPE Proposal 020721, dated April 7, 2006, which contains the scope of services, a cost estimate, and general conditions governing our services.

2.3 Standard of Care

MPE conducted this environmental investigation in accordance with generally accepted practice in a manner consistent with that level of care ordinarily exercised by members of the industry currently performing environmental investigation in the same locality and under similar conditions of time and accessibility of improvements and information. MPE does not represent that this environmental investigation reflects findings of all information available for the Property nor is it representative of future Property conditions. Activity or episodes that transpire subsequent to this environmental investigation are not considered in this investigation. Furthermore, this report presents the findings and conclusions of our environmental investigation based on the conditions at the time we performed the work, which may be subject to change due to natural occurrences or human intervention. No other representations, expressed or implied, and no warranty or guarantee is included or intended to be part of this environmental investigation or report.

MPE formulated this report on the basis of a prescribed and defined scope of services considered appropriate on the date the service was authorized in writing, unless the scope of services or the methods used to perform them was later modified, in writing, and accepted by MPE prior to the performance of the service.

² Title 35, *Illinois Administrative Code*, Part 742, entitled *Tiered Approach to Corrective Action Objectives* (TACO).

2.4 Limitation of Use

This report is confidential and MPE has prepared it for Sachnoff & Weaver, Ltd. and The Muniz Sub-Group. No additional party may use the information contained in this report without MPE's, Sachnoff & Weaver, Ltd. and The Muniz Sub-Group's permission, in writing. MPE's duties and obligations extend to Sachnoff & Weaver, Ltd. and The Muniz Sub-Group and to no other party. MPE's duties and obligations to Sachnoff & Weaver, Ltd. and The Muniz Sub-Group are not transferable to any person, corporation, or organization without the express written consent of Sachnoff & Weaver, Ltd. and The Muniz Sub-Group and MPE. MPE is not responsible for the consequences arising from unauthorized third-party use of this report.

This report must be read and interpreted as a whole. Individual sections of this report and its appendices are dependent upon the balance of this report, and upon the terms, conditions, and stipulations contained in the proposal, the report, and any written amendments accepted by MPE.

3.0 PROPERTY DESCRIPTION

3.1 Property Location and Description

The Property is located north of Inverness Avenue, east of James Avenue, south of Wisconsin Avenue, and west of Belmont Road (Figure 2, Appendix A).

The surface of the Property is improved with a light commercial/industrial building, asphalt-paved parking, concrete-paved driveway and sidewalk areas, and decorative landscaping. Figure 3 (Appendix A) shows the general layout of the Property. The Property is serviced by commonly available urban utilities. The Village of Downers Grove currently provides drinking water and sanitary service to the Property.

3.2 Topography and Surface Water Runoff

The topography of the Property is sloping with a maximum elevation difference estimated to be approximately 15 feet across the surface of the Property. The topographic map prepared by the United States Geological Survey (7.5 minute Wheaton, Illinois Quadrangle, 1993) indicates that the Property is approximately 745 feet above mean sea level and slopes to the north (Figure 4, Appendix A).

4.0 FIELD INVESTIGATION

4.1 Utility Clearance

Prior to performing any subsurface investigation at the Property, MPE's subcontractor C.S. Drilling, Inc. (CS Drilling), contacted the Joint Utility Locating Information for Excavators

service (JULIE) to request that utilities be identified. The JULIE representative issued A0932063 as the utility clearance confirmation number.

4.2 Field Investigation

The following is a summary of tasks completed during this investigation in the different areas of the Property (Figure 5, Appendix A).

Table 1 SOIL BORING LOCATION SUMMARY 5300 Belmont Road Downers Grove, Illinois					
Area Task Completed Depth of Soil Boring in Feet					
Two, former heating oil tanks	Soil boring GP-1	26			
Suspect former degreaser unit areas	Soil borings GP-2, GP-3, and GP-8	4 to 17.5			
Chemical and former solvent and waste storage area	Soil borings GP-4 and GP-7	8 to 15.5			
Former diked TCE Tank	Soil boring GP-5	12			
Access door areas	Soil borings GP-9, GP-10, GP-11	12 to 14			
Property boundary areas	Soil borings/monitoring well installation GP-6/HS-3/MW-3, HS-1/MW-1, HS-2/MW-2	14 to 30			

a below ground surface

The following sections further describe the investigation activities in these areas.

4.2.1 Soil Boring Investigation

MPE performed 11 Geoprobe[®] soil borings and three hollow stem auger soil borings at the Property from April 10 through 14, 2006 under the supervision of Ms. Kimberly M. Janson, Project Manager of MPE. On April 12, 2006, Mr. Jeffrey A. Meyerhoff, Senior Project Manager of MPE, supervised the completion of monitoring well MW-1 and soil boring and monitoring well HS-2/MW-2. MPE selected the locations of the soil borings to address areas that may have been impacted³ by prior use of solvent products at the Property.

CS Drilling advanced the soil borings to depths ranging from four to 30 feet bgs. CS Drilling used a truck, cart, and bobcat-mounted Geoprobe® to complete soil borings GP-1 through GP-11.

³ MPE reviewed certain documents provided by Sachnoff & Weaver, Ltd. concerning a prior deposition about solvent usage at the Property. In addition, certain observations made on-site and information provided by representatives of Magnetrol assisted in soil boring location selection.

MPE utilized the cart-mounted Geoprobe[®] to complete soil borings inside the building due to its size and access issues (shelves, aisle widths). The Geoprobe[®] consists of a jackhammer-type sampler equipped with 2.5-inch diameter, 4-foot long, soil samplers utilizing dual-tub sampling methodologies. A plastic, sampling tube, approximately 1.25-inch in diameter, is inserted inside the Geoprobe[®] sampler and is hammered into the soil. The Geoprobe[®] sampler remains in the soil while the plastic sampling tube is removed containing the soil for sampling. In areas covered by concrete pavement or floors, CS Drilling used a coring device to penetrate the surficial covering allowing drilling.

To complete the remaining soil borings and installation of temporary monitoring wells, MPE utilized a truck-mounted, rotary-type drilling rig equipped with $3\frac{1}{4}$ -inch hollow-stem augers and 2-inch diameter, 2-foot long split spoons. The split spoon is hammered into the soil below the auger flight to collect an undisturbed soil sample. Prior to collection of the next 2-foot sample, the hollow stem augers down to the depth of the collected 2-foot sample. Photographs documenting the field activities are included in Appendix B.

4.2.2 Soil Sampling Procedures

Prior to drilling activities with the Geoprobe® and hollow stem augers, CS Drilling decontaminated the equipment by steam cleaning in the designated decon area. The steam-cleaning unit reaches a temperature of approximately 210 degress Fahrenheit. CS Drilling decontaminated nondisposable sampling equipment using an Alconox® soapy water wash and water rinse between samples during the completion of soil borings using hollow stem augers. Decontamination using these methods helps prevent cross-contamination from soil boring to soil boring or from sample to sample.

During Geoprobe[®] soil borings, MPE collected soil samples continuously from a 4-foot, dual-tube sampler hammered into the soil. During the completion of the hollow stem auger soil borings, MPE collected soil samples continuously from 2-foot, split spoon samplers hammered into the soil. MPE collected the soil from each sampler in discrete locations in 2-foot sections. MPE placed soil in EnCoreTM Samplers⁴ for VOC analysis and in 2-ounce or 4-ounce specially cleaned glass containers for moisture content analysis. We sealed the glass containers with Teflon[®]-lined, plastic screw-on closures and refrigerated the EncoreTM Samplers and glass containers for preservation of organic compound constituents. MPE placed a second sample in a Ziploc[®] bag from each interval to be field screened (see Section 4.2.3 for more detail).

After placing soil samples in the sample preservation cooler, MPE inspected the soil remaining in the Geoprobe® sampler or split spoon in an effort to determine soil type, color, odor, and appearance. MPE visually classified the soil in general accordance with the Unified Soil

⁴ According to the manufacturer, the EnCoreTM Sampler meets the United States Environmental Protection Agency SW846-5035 VOC sampling requirements.

Classification System as per American Society for Testing and Material guidelines. Ms. Janson and Mr. Meyerhoff prepared the soil descriptions on the soil boring logs in conformance with this classification system. The soil boring logs are included in Appendix C.

Upon completion of each soil boring, MPE selected certain samples for laboratory analysis (see Section 5.1) and placed signed chain of custody seals on the samples. In addition, CS Drilling filled the open soil boring holes with a slurry grout from the bottom of the soil boring to ground surface by pumping the grout through a tremi-pipe while removing the samplers. CS Drilling prepared a slurry grout consisting of Portland cement, quick grout, and water for soil borings GP-1 through GP-8. For soil borings GP-9 through GP-11 and abandonment of the temporary monitoring wells, CS Drilling mixed quick grout and water for the slurry.

MPE and CS Drilling placed unused sample material, soil cuttings, decontamination water, and monitoring well water generated during drilling activities in 55-gallon steel storage drums that meet the United States Department of Transportation (DOT) transportable drum specifications. A total of 21 drums containing were left on the west side of the building next to the pallet storage area.

4.2.3 On-Site Physical Analysis

MPE screened each soil sample collected from the soil borings performed during this investigation approximately 10 minutes after at the time of collection with a MiniRAE Plus[®] photoionization detector (PID) equipped with a 10.6-electron-volt lamp. The use of a PID is widely accepted as a screening method for identifying the presence of organic vapors emanating from a soil sample relative to a known calibration gas. MPE calibrated the PID used in this investigation prior to the beginning of each day using a 100 parts-per-million gaseous calibration standard of isobutylene. When selecting the sample from a particular soil boring for laboratory analysis, MPE considered the information obtained from the PID along with the physical condition of the soil (e.g., odors, stains, and general appearance).

4.2.4 Subsurface Water Monitoring Well Investigation

MPE completed soil borings HS-1, HS-2, and HS-3 as temporary subsurface water monitoring wells MW-1, MW-2 and MW-3 respectively (Figure 5, Appendix A). CS Drilling constructed the monitoring wells using a 1-inch diameter, 5- or 10-foot long, 0.010-inch slot polyvinyl chloride (PVC) screen with a PVC riser. CS Drilling sand-packed the well screen with commercially available coarse sand material specifically produced for environmental well installations. CS Drilling filled the annulus (borehole space from the surface of sand to the ground surface) with bentonite grout pellets. The soil boring logs in Appendix C graphically depict the well construction.

MPE sampled the monitoring wells on April 12, 2006. Prior to sample collection, MPE purged at least three well volumes of water from each well. MPE collected each water sample with a PVC

bailer and placed in specially cleaned 40-milliliter glass containers, sealed with a Teflon-lined septa screw-on closure, and put on ice for preservation of organic compound constituents.

4.3 Property Soil Conditions

4.3.1 Soil Strata

Soil samples obtained during this investigation show that the Property generally consists of clay with varying amounts of sand and silt at the Property ground surface to 30 feet bgs. MPE observed seams of sand and occasionally silt in certain soil borings completed at the Property. The soil boring logs for the Property are included in Appendix C.

4.3.2 Soil with Apparent Stains and/or Odors

The soil borings summarized in the following table exhibited apparent stains and/or odors based on visual and olfactory indications only.

Table 2 SUMMARY OF APPARENT STAINS AND/OR ODORS 5300 Belmont Road Downers Grove, Illinois				
Soil Depth Boring in Feet a Description of Stains and/or Odors				
GP-1	4 to 8	Apparent heating oil odor		
GP-1	8 to 12	Faint apparent heating oil odor		
GP-2	2 to 4	Faint apparent sweet odor		
GP-9	0.25 to 0.75	Faint apparent petroleum odors		

a below ground surface

Visual and olfactory indications are not conclusive findings that petroleum or hazardous substances do or do not exist; rather, they are indications that the soil may have been impacted by an unknown compound. The most common way to verify the presence of a particular compound in soil is to perform confirmatory laboratory analysis using an appropriate method for the compounds of concern. Section 5.0, following, describes our selection of soil samples submitted for analysis and the analytical methods performed.

4.4 Subsurface Water

MPE encountered subsurface water in apparent fill/sand material (GP-4), clay (HS-2), and sand (HS-3) soil at varying depths of four feet to 29 feet. In other soil borings, MPE did not find or

encounter subsurface water to the depth penetrated by the soil borings. However, MPE identified several moist zones at varying soil intervals in certain soil borings.

5.0 LABORATORY ANALYSIS

5.1 Selection of Samples for Laboratory Analysis

MPE selected a minimum of one soil sample from each soil boring for laboratory analysis (except HS-3 since the location was adjacent GP-6). To select an individual soil sample for laboratory analysis, MPE considered the physical description of the soil sample at the time we collected it. We selected most samples because they exhibited the highest PID reading, the greatest degree of staining, or the strongest odor of petroleum-type and/or solvent-type compounds. We also selected samples from soil borings that did not exhibit any physical abnormalities from the same depth intervals from which other soil borings exhibited physical abnormalities, or we arbitrarily selected samples from a soil boring when no specific selection judgment was possible given the available information.

MPE selected the following samples for laboratory analysis.

Table 3 LABORATORY ANALYSIS SELECTION SUMMARY 5300 Belmont Road Downers Grove, Illinois				
Area Number Soil Boring Depth in Feet ^a		Reason Selected for Laboratory Analysis		
Two, former heating oil tanks	GP-1	4 to 6	Highest PID reading and apparent heating oil odors	
Suspect former degreaser unit areas	GP-2	0 to 4	Highest PID reading and faint apparent sweet odor	
	GP-3	6 to 8	Highest PID reading	
	GP-8	0 to 2	Soil directly beneath the floor	
	GP-8	6 to 8	Highest PID reading	
	GP-8	14.5 to 16	HOLD-Potential analysis	
	GP-4	4 to 8	Highest PID reading	
Chemical and former solvent and waste storage room	GP-7	0 to 2	Highest PID reading	
	GP-7	2 to 4	HOLD-Potential analysis	
	GP-7	4 to 6	HOLD-Potential analysis	
r W ITOF	GP-5	4 to 6	Highest PID reading	
Former diked TCE tank	GP-5	6 to 8	HOLD-Potential analysis	

Table 3 LABORATORY ANALYSIS SELECTION SUMMARY 5300 Belmont Road Downers Grove, Illinois

Area Number	Soil Boring	Depth in Feet ^a	Reason Selected for Laboratory Analysis
Aicaramoci	1	 	
	GP-9	2 to 4	HOLD-Potential analysis
	GP-9	8 to 10	Highest PID reading
	GP-10	0 to 4	Highest PID reading
Access door areas	GP-10	10 to 12	HOLD-Potential analysis
	GP-11	0 to 2	Second highest PID reading and shallow depth
	GP-11	4 to 6	HOLD-Potential analysis
	GP-11	12 to 14	Highest PID reading
Property boundary areas	GP-6	4 to 6	Sandy seams in soil
	HS-1	4 to 6	Highest PID reading
	HS-1	6 to 8	HOLD-Potential analysis
	HS-1	8 to 10	HOLD-Potential analysis
	HS-2	10 to 12	Highest PID reading
	HS-3	16 to 18	HOLD
	HS-3	26 to 28	HOLD
	MW-2	Not applicable	Water sample
	MW-3	Not applicable	Water sample

^a Below ground surface

5.2 Chain-of-Custody and Sample Handling Methods

MPE transmitted selected soil samples to Test America, Inc. (Test America) of Buffalo Grove, Illinois, for laboratory analysis using standard Chain-of-Custody documentation procedures and handling requirements as set forth in the United States Environmental Protection Agency (USEPA) Publication SW-846 entitled *Test Methods for Evaluation of Solid Wastes*, Third Edition. MPE placed chain of custody seals on samples submitted to the laboratory for analysis and included a trip blank in the cooler each day for analysis for determination if cross contamination occurred in the cooler.

5.3 Laboratory Analytical Methods

Test America analyzed the soil and water samples for VOCs using Method 5035/8260B. The aforementioned methods are described in the USEPA Publication SW-846 or American Society of Testing and Materials. Summaries of Test America's analytical results are presented in the tables in Appendix D. Laboratory analytical reports are included in Appendix E.

5.4 Laboratory Analysis Results

Laboratory analytical results identified detectable concentrations of certain VOCs in certain samples submitted for analysis. The following sections discuss the analytical results for each area of the Property.

5.4.1 Two, Former Heating Oil Tank Area Results

Laboratory analysis of soil sample GP-1 (4-6) exhibited no detectable concentrations of VOCs. However, the detection limits for certain VOCs is higher than the most stringent soil remediation objectives. The laboratory report indicates that the sample was diluted due to the presence of high concentrations of non-target analytes and that certain quality control measurements associated with the sample did not meet the method acceptance criteria.

5.4.2 Suspect Former Degreaser Units Area Results

Laboratory analysis of selected soil samples from soil borings GP-2 (0-2), GP-3 (6-8), and GP-8 (0-2 and 6-8) exhibited detectable concentrations of certain VOCs. Specifically, the VOCs detected included cis 1,2-Dichloroethene (cis 1,2-DCE), 1,1-Dichloroethane (1,1-DCA), 1,1-Dichloroethene (1,1-DCE), tetrachlorethene (PCE), 1,1,1-Trichloroethane (1,1,1-TCA), and trichloroethene (TCE). The concentration of TCE in soil boring GP-2 exceeds TACO Tier 1 soil remediation objectives for the inhalation exposure route for industrial/commercial properties, construction workers, and the soil component of the groundwater ingestion exposure route for Class I and Class II groundwater. The concentration of TCE in soil boring GP-3 exceeds TACO Tier 1 soil remediation objectives for the soil component of the groundwater ingestion exposure route for Class I groundwater. In addition, soil boring GP-2 exhibited a concentration of PCE that exceeds TACO Tier 1 soil remediation objectives for the soil component of the groundwater ingestion exposure route for Class I groundwater but not Class II groundwater. The remaining VOCs detected in these locations did not exceed TACO Tier 1 soil remediation objectives. In addition, the laboratory report identified certain quality control measurements associated with these samples did not meet the method acceptance criteria. However, the results are still within an acceptable range that can be reported and it meets laboratory criteria.

5.4.3 Chemical and Former Solvent and Waste Storage Area Results

Laboratory analysis identified detectable concentrations of acetone in soil boring GP-4 (0-4) and 1,1,1-TCA in soil boring GP-7 (0 to 2). The detected concentrations do not exceed TACO Tier 1 soil remediation objectives. In addition, the laboratory report identifies the acetone to be a characteristic of a laboratory artifact and to be present in the method blank.

5.4.4 Former Diked TCE Tank Area Results

Laboratory analysis identified detectable concentrations of cis 1,2-DCE and TCE in soil boring GP-5 (4-6). The detected concentration of TCE exceeds TACO Tier 1 soil remediation objectives for inhalation exposure route for industrial/commercial properties, construction workers, and the soil component of the groundwater ingestion exposure route for Class I and Class II groundwater. The detected concentration of cis 1,2-DCE does not exceed TACO Tier 1 soil remediation objectives.

5.4.5 Access Door Areas Results

Laboratory analysis identified detectable concentrations of chloroform, 1,1-DCA, 1,2-Dichloroethane (1,2-DCA), 1,1-DCE, 1,1,1-TCA, 1,1,2-Trichloroethane (1,1,2-TCA), and TCE in soil boring GP-11 (0-2). The concentration of 1,1-DCE and 1,1,1-TCA exceed TACO Tier 1 for the soil component of the groundwater ingestion exposure route for Class I and Class II groundwater and the concentration of 1,1,2-TCA exceeds Class I component. The remaining detected compounds do not exceed TACO Tier 1 soil remediation objectives. In addition, no detectable concentrations of VOCs were identified in the soil samples analyzed from soil borings GP-9 (8-10) and GP-10 (0-4). In addition, certain quality control measurements associated with these samples did not meet the method acceptance criteria.

5.4.6 Property Boundary Area Results

Laboratory analysis did not identify detectable concentrations of VOCs in the soil samples analyzed from soil borings GP-6 (4-6), HS-1 (4-6), or HS-2 (10-12). Laboratory analysis did not identify detectable concentrations of VOCs in the water samples analyzed from MW-2, MW-3, and the QA/QC sample. In addition, certain quality control measurements associated with these samples did not meet the method acceptance criteria for the water samples. However, the results are still within an acceptable range that can be reported and it meets laboratory criteria.

5.4.7 Trip Blank Results

Analytical results identified no detectable concentrations of VOCs in the trip blanks submitted with the samples for analysis.

6.0 CONCLUSIONS

Based on reviews, field investigations, and laboratory analyses performed by MPE during this investigation and described in this report, the following conclusions are set forth.

- Soil at the Property consists primarily of clay and sand, in certain soil borings, from the ground surface to a depth of at least 30 feet bgs.
- Soil from soil boring GP-1 (4-12) exhibited apparent heating oil odors. Soil from soil boring GP-2 (2-4) exhibited an apparent sweet odor and GP-9 (0.25-0.75) apparent petroleum odors.
- MPE encountered subsurface water in soil borings GP-4, HS-2, and HS-3 at the Property. MPE also noted several soil borings with moist zones at varying soil intervals.
- Laboratory analysis identified detectable concentrations of certain VOCs in soil samples collected from the Property. The detected compounds are commonly found in certain solvents.
- Soil borings GP-2 (0-4), GP-3 (6-8), GP-5 (4-6), and GP-11 (0-2) exhibited concentrations of certain VOCs that exceed TACO Tier 1 soil remediation objectives for commercial/industrial properties, construction workers, and/or the soil component of the groundwater exposure route for Class I and/or Class II groundwater. Soil borings GP-4 (4-8), GP-7 (0-2), GP-8 (0-2 and 6-8) exhibited detectable concentrations of VOCs; however, the detected concentrations did not exceed applicable TACO Tier 1 soil remediation objectives.
- Water samples collected from MW-2 and MW-3 did not exhibit detectable concentrations of VOCs.
- Trip blanks that accompanied samples in the cooler did not exhibit detectable concentrations of VOCs indicating that the presence of VOCs in certain soil samples was not a result of cross contamination in the cooler.
- The extent of soil impacted by VOCs detected in the subsurface at the Property was not determined during this investigation.

Based on the analytical results, certain areas of the Property have been impacted by historic activities. MPE's environmental investigation was designed to identify areas of impact and therefore did not identify the vertical or horizontal extent of impact in most cases.

Sincerely,

MOSTARDI PLATT ENVIRONMENTAL

pt at for

Limberly M. Janson Kimberly M. Janson, PG

Project Manager

REVIEW BY:

Jeffrey A. Meyerhoff

APPENDICES

Appendix A: Figures

Appendix B: Property Photographs

Appendix C: Soil Boring Logs

Appendix D: Analytical Summary Tables

Appendix E: Laboratory Analytical Reports

Appendix A: Figures

Approximate Scale: 1 : 24,000

Appendix B: Property Photographs

SOIL BORING GP-1

SOIL FROM SOIL BORING GP-1

MIXING SLURRY GROUT

SLURRY GROUTING GP-1

DECON AREA FOR GP-1 THROUGH GP-3 – DECONING GP-1 EQUIPMENT

CONCRETE CORING THE LOCATION FOR SOIL BORING GP-2

SOIL BORING GP-2

SOIL FROM GP-2

CONCRETE CORING GP-3

DRILLING SOIL BORING GP-3

SOIL FROM GP-3

SOIL BORING GP-4

SOIL FROM GP-4

TAPE MEASURE SHOWING AMOUNT OF WATER IN GP-4 4- TO 8-FOOT INTERVAL

GROUTING SOIL BORING GP-4

SOIL BORING GP-5

SOIL FROM GP-5

SOIL BORING GP-5 FILLED WITH GROUT

DECON TUB AND 55-GALLON STORAGE DRUMS – DECON AREA FOR SOIL BORINGS GP-4 THROUGH GP-11 AND HS-1 THROUGH HS-3

SOIL BORING GP-6

SOIL FROM GP-6

DECONING SPLIT SPOON SAMPLER BETWEEN USE

SOIL BORING HS-1

COMPLETED TEMPORARY MONITORING WELL MW-1 (HS-1)

SOIL BORING HS-2

SOIL SAMPLES COLLECTED FROM HS-2

INSTALLING MONITORING WELL MW-2

SOIL BORING HS-3

COMPLETED MONITORING WELL MW-3 WITH LOCK

COMPLETED MW-2 WITH LOCK

COMPLETED MW-1 WITH LOCK

CONCRETE CORING FOR SOIL BORING GP-7

SOIL BORING GP-7

GROUTING SOIL BORING GP-7

CONCRETE CORING FOR SOIL BORING GP-8

DRILLING SOIL BORING GP-8

SOIL FROM GP-8

DRILLING SOIL BORING GP-9

SOIL FROM GP-9

PREPARING GROUT FOR GP-9

GROUTING SOIL BORING GP-9

PURGING WATER FROM MW-2

LOCATION OF SOIL BORING GP-10

SOIL BORING GP-11

SOIL FROM GP-11

GROUTING GP-11

REMOVING MW-1

MIXING GROUT FOR MW-1

GROUTING MW-1

REMOVING MW-3

GROUTING MW-3

REMOVING MW-2

CALIBRATION GAS, PHOTOIONIZATION DETECTOR (PID) AND COOLER USED DURING INVESTIGATION

TYPICAL CLEANING METHOD OF GROUTING EQUIPMENT DURING INVESTIGATION

DRUM STORAGE AREA

Appendix C: Soil Boring Logs

	Magnetrol 5300 Belmont Road Downers Grove, Illinois								LOG OF BO	ORING GP		
*****										·	(Page	1 of 1)
		5300 E	Belmo s Grov	nt Roa ve, Illin	ois		H	Date Drilled Hole Diameter Drilling Method Drilling Company Boring Location	: April 10, 2006 : 2.5-Inch : Dual-Tube Sampling, Geopre : C.S. Drilling, Inc. : Former Heating Oil Tank Are			Feet a Janson, PG
Depth in Feet	PID (ppm)	PII (ppi	,	% Recovery	Water Levels	nscs	GRAPHIC		DESCRIPTION		Lab Sample Number	Laboratory Analysis
0-						_ASP_	77	ASPHALT				
1- 2- 3-	0.0	8		10%		CL		moderately soft,	h some gray clay, modera trace fine- to medium-grai ded grains, dry to moist, no	ned sand,		
4 5 6 7	89.4 0.0			60%		CL		moderately soft,	h gray clay, moderate plas occasionally fine- to medit ni-rounded, dry, apparent f	ım-grained	GP-1 (4-6)	VOCs
8- 9- 10- 11-	0.0	0	***************************************	25%		CL		occasional fine-	rown clay, moderate plasti to medium-grained sand, n oist, faint apparent heating	nostly		
13-		44144		0%	***************************************	NR		No recovery, Ge	oprobe broke.			
15-		***************************************	***************************************	0%				No recovery.				
16- 17-			***************************************	0%		NR						
18- 19-			***************************************	0%								
20 21-	0.0		***************************************	100%		SP		moderately roun	oot seam of brown, fine-gra i, dry, no odors. high plasticity, stiff, trace			
22-				0%		CL		sand, fractured g	rains, dry, no odors. Brown of sample for top 1.5 feet.		-	
24 – 25 –						NR		No recovery. Los	t sampler in hole, could no	ot retrieve.		
26-							·	End of Boring at	26 Feet			· · · · · · · · · · · · · · · · · · ·
	-	it 26 fee waler e		_	d surf	ace (BGS	5).					

())	∕los E	ita wir	rdi Cosess	P	latt tal			LOG OF BOR	RING GP-	2 (Page	1 of 1)
	D	5300 B owners	Gro	trol ont Road ve, Illino M06140	ois		Ho Di Di	ate Drilled ole Diameter rilling Method rilling Company oring Location	: April 10, 2006 : 2.5-Inch : Dual-Tube Sampling, Geoprobe : C.S. Drilling, Inc. : By suspect former degreaser uni		: 4 Fe or : Kim	eet Janson, PG
			<u>Jour</u>						·			
Depth in Feet	PID (ppm)	PIE (ppr 0 25	n)	% Recovery	Water Levels	nscs	GRAPHIC		DESCRIPTION		Lab Sample Number	Laboratory Analysis
0			***************************************			CONC		CONCRETE				
1			an establish the second se			CL		fine-grained san	gray clay, very stiff, low plasti d on outside of clay, trace fine and, rounded, dry, no odor.	city, to		
2	39.0		0	<50%		CL		CLAY, same as	above with faint apparent swe	et odor.	GP-2 (0-4)	VOCs
3			автарнативниципинативнативнативнатив			SP		SAND, light brov sweet odor.	vn sand, well sorted, dry, faint	apparent		
4-								End of Boring at	4 Feet	***************************************		
End of t No subs Refusal	surface	water er	ncoun			ce (BGS) I.	(.					

1		Vlost	ardi	P	latt		LOG OF BORING GP	-3	
-			et ausur	(4 FE)	CEL			(Page	1 of 1)
	D	5300 Bel owners G	metrol mont Road Grove, Illino ect M0614	ois		Ho Dr Dr	ate Drilled : April 10, 2006 Total Depth ole Diameter : 2.5-Inch Field Supervis rilling Method : Dual-Tube Sampling, Geoprobe (cart) rilling Company : C.S. Drilling, Inc. oring Location : By suspect former degreaser unit	: 11 F or : Kim	eet Janson, PG
rame v materials									
Depth in Feet	PID (ppm)	PID (ppm)	-8 % Recovery	Water Levels	nscs	GRAPHIC	DESCRIPTION	Lab Sample Number	Laboratory Analysis
0-	-				CONC		CONCRETE		
1-	1.7	0	90%				SANDY CLAY, brown with trace dark gray clay, sandy, moderately stiff to stiff, high plasticity, dry, no odors.	Andrew To The Party of the Part	
2-	0.0		441444114411444144414444		CĽSP				
4-	- 0.0						CLAY, brown clay with some gray mottling, moderate		
5-	2.1	0			CL		plasticity, stiff, trace fine-grained sand, dry, no odors.		
6~	-				SW		SAND, 2" sand seam, fine- to medium-grained,		
]						\semi-rounded grains, dry, no odors.		
7-	7.4	0	100%		CL		CLAY, brown clay with some gray mottling, moderate plasticity, stiff, trace fine-grained sand, silty, dry, no odors.	GP-3 (6-8)	VOCs
8-	7 7 7						CLAY, brownish gray clay, moderately stiff, trace sand, moderate plasticity, dry, no odors.		
9- 10-	0,0	0	100%		CL			-	
	——————————————————————————————————————								
11-		1.:	i1	1			End of boring at 11 feet.		
		at 11 feet l e water end	below groun	nd sur	face (BGS	3).			

) _j r	Vlosta Envir	rdi	P	latt		LOG OF BORING GP	-4	
		Zaver	Corre	<u>i</u> Çei	val			(Page	1 of 1)
	D	Magne 5300 Belmo lowners Gro MPE Project	nt Roa ve, Illin	ois		Hi Di Di	ate Drilled : April 11, 2006 Total Depth ole Diameter : 2.5-Inch Field Supervis rilling Method : Dual-Tube Sampling, Geoprobe (truck) rilling Company : C.S. Drilling, Inc. ring Location : Outside a chemical storage room	: 8 Fe or : Kim	eet Janson, PG
Depth in Feet	PID (ppm)	PID (ppm)	Recovery	Water Levels	uscs	GRAPHIC	DESCRIPTION	Lab Sample Number	Laboratory Analysis
0-	 				ASP		ASPHALT		
2-			0%		NR		No recovery - apparent concrete with rebar and gravel fill.		
4	0.1	θ	75%	THE PARTY OF THE P	SW		SAND, approximate 14" water on top of brown with pepper speckled, fine- to coarse-grained sand to medium-grained gravel, wet, no odors. Clayey sand at base. CLAY, gray clay, moderately stiff, moderate plasticity, moist to dry, no odors.	GP-4 (4-8)	VOCs

End of boring at 8 feet.

End of boring at 8 feet below ground surface (BGS). Subsurface water encountered at 4 feet bgs. Ended boring due to water.

	D	5300 E owners	s Grov	trol nt Road ve, Illino M06140	ois		Ho Dr Dr	ate Drilled ole Diameter rilling Method rilling Company oring Location	Total Depth Field Superviso oprobe (truck) k on east side of building			
epth in eet	PID (ppm)	PI (pp 0 1	m)	% Recovery	Water Levels	nscs	GRAPHIC		DESCRIPTION		Lab Sample Number	Laboratory Analysis
1	0.0	· · · · · · · · · · · · · · · · · · ·		75%		ASP CL CL		in diameter of find brittle, stiff, dry, Same as above	nd gray mottled clay, sm ine-grained sand, some in no odors. with faint petroleum odo except no odors.	plasticity, more		
3-4	0.0	8				CL		CLAY, brown w moderate plast no odors.	h sand and gravel seam with seams of gray clay, s icity, stiff, trace sand who lay, with fine- to coarse- icity, stiff, dry, no odors.	ome sandy clay, en not sandy, dry,		
5	22.8			100%	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	CL		moderate piast	icity, stiil, dry, no odols.		GP-5 (4-6)	VOCs
7	17.2		}	A TOTAL CONTRACTOR OF THE PROPERTY OF THE PROP		CL		trace coarse-gr	lay, sandy in spots, high ained sand, dry, no odor ained sand, dry, no odor lay, high plasticity, mode	s. erately soft to stiff,		HOLD
9-10-11-		Эттини		300%		CL		trace fine- to co odors.	arse-grained sand and g	gravel, dry, no		
12								End of boring a	at 12 feet.			

Ĉ) N	Vlosta	rdi	Pl	att		LOG OF BORING GP	-6		
<u>"</u>	4.	Envir	Cresion.	ungi	.cz (-			(Page	1 of 1)	
	D	Magnet 5300 Belmon downers Grov	nt Roa /e, Illin	ois		Ho Dr Dr	ate Drilled : April 11, 2006 Total Depth ole Diameter : 2,5-Inch Field Supervis filling Method : Dual-Tube Sampling, Geoprobe (truck) filling Company : C.S. Drilling, Inc. oring Location : Along Wisconsin Avenue	: 16 Feet visor : Kim Janson, PG		
			<u></u>			•				
Depth in Feet	PID (ppm)	PID (ppm) 0 15 30	% Recovery	Water Levels	nscs	GRAPHIC	DESCRIPTION	Lab Sample Number	Laboratory Analysis	
0-	1			Π	TP	- J-	GRASS and topsoil.			
1	0.0	0	75%		CL		CLAY, dark brown clay, stiff, moderate plasticity, occasional reddish oxidation, occasional sand, fine- to coarse-grained, dry, no odors.			
3-	0.0	6	The state of the s		JL					
4	1		1000		_		CLAY, brown and reddish clay, silty and sandy in areas, high plasticity, moderately soft, moist, no odors.	GP-6 (4-6)	VOCs	
5-	0.0	Ť	100%		CL				, 5 0 3	
6-								:		
7-	0.0		The second secon		CL		CLAY, brown and reddish clay, high plasticity, moderately stiff, occasional sand fine- to medium-grained, moist, no odors.			
8-					CL	X	CLAY, brown and gray clay, soft to stiff, trace fine-grained Asand, dry, no odors.			
9-	0.0	<u> </u>	100%				CLAY, gray clay, moderate to low plasticity with depth, stiff, trace sand, fine-grained, dry, no odors.		HOLD	
10	1				CL					
11-	0.0	Φ	100%							
12	0.0	Ф	100%		CL		CLAY, gray clay, moderately stiff, low plasticity, soft for 3" at approximately 12.5, trace fine-grained sand, dry, no odors.			
13-	0,0		100%		CL		CLAY, gray clay, moderate plasticity, areas of soft clay, mostly stiff, dry, no odors.	A STATE OF THE STA	HOLÐ	
16-	-						End of boring at 16 feet			

End of boring at 16 feet below ground surface (BGS). No subsurface water encountered.

Difficulty with samplers going deeper. Melling top of dual-tube sampler due to friction.

Mostardi Platt : April 12, 2006 Date Drilled Magnetrol 5300 Belmont Road Hole Diameter : 2.5-Inch Downers Grove, Illinois Drilling Method Drilling Company

LOG OF BORING GP-7

(Page 1 of 1)

Total Depth : 15.5 Feet

Field Supervisor

: Kim Janson, PG

: Dual-Tube Sampling, Geoprobe (cart)

: C.S. Drilling, Inc.

	N	1PE Project	M0614	01			oring Location : Inside chemical storage room	·····	
Depth in Feet	PID (ppm)	PID (ppm) 0 15 30	% Recovery	Water Levels	uscs	GRAPHIC	DESCRIPTION	Lab Sample Number	Laboratory Analysis
0-					CONC		CONCRETE		
1	13.8	9	100%				CLAY, brown clay, trace sand, fine- to coarse-grained, trace fine-grained gravel, fractured to semi-rounded grains, stiff, moderate plasticity, dry, no odors.	GP-7 (0-2)	VOCs
3-	3.6	A			CL		Stiff to moderately stiff.	GP-7 (2-4)	HOLD
5-	10.0		100%				CLAY, brownish gray clay, occasional sand, fine- to coarse-grained, semi-angular grains, moderate plasticity, moderately soft to stiff at 6.5 feet, dry, no odors.	GP-7 (4-6)	HOLD
7-	9.9	0			CL			:	
8- 9-	8.4	0	100%				CLAY, brownish gray clay, trace silt and sand, fine- to coarse-grained, semi-angular grains, moderate plasticity, stiff, dry, no odors.		
10-	7.4		100%		CL		Increasing plasticity.		
12-	8.2	0	100%	***************************************	CL		CLAY, gray clay, trace silt and sand, fine- to coarse-grained, semi-angular grains, moderate plasticity, stiff, dry, no odors.		
13 -	7.0	0	50%						
2	1						End of boring at 15.5 feet		

End of boring at 15.5 feet below ground surface (BGS).

No subsurface water encountered.

Difficulty with samplers going deeper.

Note: 2-4 interval, bagged sample for PID, had hole in bag; therefore, PID

reading inaccurate.

h:\Data\Assessmt\Projects.2006\M061401\GP-7.bor

)) n	vlost Eno	ardi	P	latt		LOG OF BORING GP	-8	
								(Page 1	of 1)
		5300 Bei	netrol mont Ros Frove, Illir			H D D	ate Drilled April 12, 2006 Total Depth ole Diameter 2.5-Inch Field Supervis rilling Method Dual-Tube Sampling, Geoprobe (cart) rilling Company C.S. Drilling, Inc.	; 17.5 F sor : Kim Ja	eet anson, PG
	N	1PE Proje	ect M0614	101 T		B	oring Location : By suspect former degreaser unit		
Depth in Feet	PID (ppm)	PID (ppm)		Water Levels	nscs	GRAPHIC	DESCRIPTION	Lab Sample Number	Laboratory Analysis
0-				T	CONC		CONCRETE		<u></u>
1-1	10.2	θ	100%		FL		FILL, brown clay with sand fill, fine- to coarse-grained, fractured grains, some reddish oxidation, relatively brittle, dry, no odors.	GP-8 (0-2)	VOCs
3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	9.3	0			FL		FILL, dark brown clay fill, trace brick and sand, fine- to medium-grained, fractured grains, low plasticity, stiff, dry, no odors.		
5	9.3		100%		CL		CLAY, brown clay, trace sand, fine- to medium-grained, stiff, low plasticity, dry, no odors.		
6-1 7-1	12.6	0			CL/SP CL		Approximately 4-inch seam of sandy brown clay, dry. CLAY, brown clay, trace sand, fine- to medium-grained, stiff, low plasticity, dry, no odors.	GP-8 (6-8)	VOCs
8 7 7 7 9 7 1	9.8	0	100%		CL		CLAY, brown clay, trace sand, medium- to coarse-grained, semi-rounded grains, moderately stiff, low plasticity, dry, no odors.		
10-		0	100%	***************************************	CL/SP		SANDY CLAY, brown sandy clay, trace coarse-grained sand and silt, angular grains, moderately soft, moderate plasticity, dry, no odors.		
12 13					CL		CLAY, gray clay, trace fine-grained sand, stiff to moderately stiff, moderate plasticity, dry, no odors.		
14	5.0	9	100%	***************************************					
15	8.2	0	100%	***************************************	CL/ML		SILTY CLAY, gray silty clay, hight plasticity, soft, moist to dry at 15.5 feet, no odors.	GP-8 (14.5-16)	HOLD
16-	6.7		100%		sc		CLAYEY SAND, gray clayey sand, fine-grained, soft, moist, no odors.		
17-	J.,		10070		CL.	\mathbb{Z}	CLAY, gray clay, some silt, trace fine- to medium-grained sand, moderately soft, high plasticity, dry, no odors.		
18	1						End of boring at 17.5 feet		

End of boring at 17.5 feet below ground surface (BGS). No subsurface water encountered.

Difficulty with samplers going deeper.

	!	Euro	<u>Our</u> e	258	tal			(Page	1 of 1)
	D	Magnel 5300 Belmo Jowners Grov	ont Road ve, Illind	ois		Ho Dri Dri	te Drilled : April 13, 2006 Total Depth le Diameter : 2.5-Inch Field Super lling Method : Dual-Tube Sampling, Geoprobe (truck) lling Company : C.S. Drilling, Inc. ring Location : By access door on west side of building	; 18 F visor ; Kim	Feet Janson, PG
	<u> </u>	APE Project	IVIU014	<u> </u>	T				
Depth in Feet	PID (ppm)	PID (ppm) 0 15 30	% Recovery	Water Levels	nscs	GRAPHIC	DESCRIPTION	Lab Sample Number	Laboratory Analysis
0- 1- 2-	0.2	A	95%		ASP FL		ASPHALT FILL, clay, sand, and gravel fill, coarse-grained, dry, faint apparent petroleum odors. CLAY, brown and dark brown clay, occasional sand, trace reddish oxidation, stiff, moderate to low plasticity, dry, no		
3	1.6		Additional behaviors and the first of the fi	The state of the s	CL		odors. SANDY CLAY, brown sandy clay, fine- to medium-grainer	GP-9 (2-4)	HOLD
5	1.5		100%	***************************************	CL/SP		sand, moderately soft, high plasticity, dry, no odors. Increasing sand at 5 feet, moist.		
7 8	0.0		Whiteleton of the state of the			[] []	Moist, some reddish tint to soil. SANDY CLAY, brown sandy clay, fine- to coarse-grained		
9-	4.5	0	100%	***************************************	CL/SP	//	soft, moist, no odors. Very moist from 10.5 to 11.5 feet.	GP-9 (8-10)	VOCs
11-	0.0	——————————————————————————————————————	100%				CLAY, gray clay, trace sand and silt, high plasticity,		
13	0.0		100%		CL		moderately soft, moist on outside of sample but dry inside soil sample, no odors. SANDY CLAY, gray sandy clay, trace fine-grained gravel	and the same of th	
15	1.8	0	100%		CL/SP		moderatel soft, high plasticity, moist to dry, no odors.		
17-	2.0	0	100%			//	Stiff with three, approximately 2-inch, moist, soft, sandy clay seams.		
18-							End of boring at 18 feet		

) N	/losta Envir	rdi	P	latt tal		LOG OF BORING GP-		
**************************************	Sept.		-		L			(Page	1 of 1)
	D	Magne 5300 Belmo owners Grov 1PE Project	nt Road ve, Illino	ois		Ho Dr Dr	ate Drilled : April 13, 2006 Total Depth ble Diameter : 2.5-Inch Field Supervis filling Method : Dual-Tube Sampling, Geoprobe (truck) filling Company : C.S. Drilling, Inc. filling Location : By access door on east side of building	; 12 F or ; Kim	eet Janson, PG
<u></u>		IF L. F TOJECK	10014			I			······································
Depth in Feet	PID (ppm)	PID (ppm) 0 15 30	% Recovery	Water Levels	uscs	GRAPHIC	DESCRIPTION	Lab Sample Number	Laboratory Analysis
0-					ASP	x x	ASPHALT		
					FL	XX	FILL, brown sandy clay fill, soft, moderate plasticity, dry, no odors.		
1-							CLAY, olive gray clay, trace fine-grained sand, moderately soft, high plasticity, dry, no odors.		
2-	1.7	P	<50%					GP-10 (0-4)	VOCs
- - -					CL				
3									
4- 5- 6-	0.0	0	- Faint Laboration and Laboration an	***************************************	CL		CLAY, brown clay with reddish oxidation spots and some gray, occasional sand, fine- to coarse-grained, angular grains, moderately stiff, moderate plasticity, dry, no odors.		
7-	0.0	0	100%		CL		CLAY, olive gray and gray mottled clay, occasional black or dark discoloring with depth, moderately stiff, moderate plasticity, dry, no odors.		
8-					CL		CLAY, brown with some gray clay, silty with trace of sand, moderately stiff, moderate plasticity, dry, no odors.		
9- 10- 11- 12- End of No sub Ended	0.2	0	100%		CL/SP		SANDY CLAY, brown sandy clay, trace sand, fine- to coarse-grained, soft, moist, no odors.		
11-	0.9	Ф	100%		CL/SP		SANDY CLAY, brown sandy clay, fine- to coarse-grained, semi-rounded grains, very moist, no odors.	GP-10 (10-12)	HOLĐ
[:	1				CL		CLAY, brown clay, trace sand, moderately stiff, brittle with low plasticity, dry, no odors.		
12-	<u> </u>	<u></u>	1		1		End of boring at 12 feet		
End of No sub Ended	sudace	at 12 feet belo water encour due to perceiv	ntered.		face (BG	5).			

		Ma	<i>ACTO40</i> 0			1	ate Drilled : April 14, 2006 Total Depth ole Diameter : 2.5-inch Field Superviso	(Page 1 : 14 Fe	
	D	owners	elmont Ro Grove, III	inois		D D	rilling Method : Dual-Tube Sampling, Geoprobe (truck) rilling Company : C.S. Drilling, Inc.		
	<u> </u>	APE Pro	ject M06 ⁻	401	T	B	oring Location : By access door on east side of building		
epth in eet	PID (ppm)	PID (ppm	I) Reco	Water Levels	USCS	GRAPHIC	DESCRIPTION	Lab Sample Number	Laboratory Analysis
0-					ASP	ХX	ASPHALT FILL, brown and reddish brown sandy clay fill, fine- to		
1-	3.4	φ	759	,	FL	>>	coarse-grained, moderately stiff, low plasticity, dry, no hodors.	GP-11 (0-2)	VOCs
2-					-		CLAY, brown and gray clay, trace fine- to medium-grained sand, fragmented grains, moderately stiff, moderate plasticity, dry, no odors.	Land of the Party	
3-	0.0		***************************************		CL				
4-	-	-			<u> </u>		SANDY CLAY, gray sandy clay, fine- to coarse-grained,		
5-	0.8	0	100	%	- Wideling and the state of the		trace fine-grained gravel, high plasticity, moist, no odors.	GP-11 (4-6)	HOLĐ
6- 7-	2.2			шиненимим	CL/SP				
8-	-		distribution of the state of th	***************************************			CLAY, gray clay, trace sand and some gravel fragments, moderately stiff, moderate plasticity, dry, no odors.		
9-	0.3	0	50'	%	CL				
10-	2.4	——————————————————————————————————————	100	%	CL		CLAY, gray clay with gravel fragments at top of sample, trace sand, fine- to medium-grained, stiff, moderate plasticity, dry, no odors.	A CAPACITATION OF THE PROPERTY	
12- 13-	6.7	0	100	1%	CL		CLAY, gray clay with silt and sand, fine-grained with trace medium-grained gravel, moderately soft, high plasticity, dry no odors.	GP-11 (12-14)	VOCs
	1			ALCORONA POR CONTRACTOR AND CONTRACT	CL	 	CLAY, gray clay, trace sand, stiff, moderate plasticity, dry,		
14-	-	11			1		no odors. End of boring at 14 feet	,	

Ć) n	Λο: Ε	starc	di Geogra	PI Cuit	att		LOG OF BORIN	G HS-1	m 4 (0)
		سر.						Date Drilled : April 12, 2006 Tota	al Depth	(Page 1 of 2)
	D	5300 owner	Magnetrol Belmont R s Grove, I	llino	is		1	· · · · · · · · · · · · · · · ·	d Supervisor	: Kim Janson, PG
		IFEF	roject M06	140						
Depth in Feet	% Recovery	PID (ppm)	PID (ppm)	ater L	Blow Count	nscs	GRAPHIC	DESCRIPTION	Laboratory Analysis	Well: MW-1 Elev.:
0-					2	TP	ויי	TOPSOIL, grass overlying clayey topsoil.		
1-	100%	7.0	φ		3 3 6	CL		CLAY, brown with trace gray clay, silty, medium plasticity, trace reddish oxidation spots (1 to 2 mm diameter), trace fine- to coarse-grained sand, semi-rounded, dry, no odors.		PVC Riser —Bentonite
3-	80%	6.6	0	***************************************	4 5 10 14	CL		CLAY, same as above with no reddish oxidation, moderate to low plasticity.		
4- 5-	95%	10.2	0	***************************************	4 6 7 9	CL		CLAY, gray clay, trace brown, sliff, moderate plasticity, trace fine- to coarse-grained sand, semi-rounded to fragmented, dry, no odors.	VOCs	
6-					3	CL.	7	CLAY, same as above except silty.		Sand Pack
7-	100%	3.2	 	**************************************	4 5 7	SP/SW CL		SAND, gray sand approximately .25" thick, medium-grained with trace coarse-grained, generally well-sorted sand, coarse-grained gravel, moist, no odors.	HOLD	
9-	100%	3.8	0		3 4 4 5	CL/ML		CLAY, gray clay, trace brown, moderately soft, moderate plasticity, trace to occasional gravel, fine- to coarse-grained sand, semi-rounded to fragmented,trace to occasional gravel, moderately dry, no odors.	HOLD	Slotted Screen
10-	100%	3.8	9		3	CUML		SILTY CLAY, gray silty clay, soft, high plasticity, trace fine-grained sand, medium-grained gravel, moist on outside of sample, no odors. SILTY CLAY, large gravel fragments at top of		200 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12-					9 3 5	CL/ML		sample, then gray silty clay, stiff, moderate plasticity, trace sand fine- to medium-grained, dry, no odors.		
13-	100%	0.5	Ф		7 9		//	SILTY CLAY, gray silty clay, soft, high plasticity, moist, trace fine to coarse sand and gravel, no odors.		
15 T	100%	0.0	•		3 4 6	CL		CLAY, gray clay, occasionally silty, stiff, moderate plasticity, trace fine-grained sand, dry, no odors. Two micro seams of sand at approximately 13'	****	## H H H H H H H H H H H H H H H H H H
13.200]			1	8	, J.	//	and 13.5', < 1cm thick, moist to wet.	THE PERSONNEL PROPERTY OF THE PERSONNEL PROP	
16-	100%	0.7	Ф		3 4 7 8			Lens of medium-grained sand at 15.75', moist.		
18-			1	·				1		
No sub varying Interval	surface depths from 1	water : 5 to 30	feet benton	d. Se ited v	ams vith r	of sand a no casing	and gra i.	avel identified at o 4-foot interval.		

Mostardi Platt Environmental								LOG OF BOR		
% =			nviro	agn	ecce	al			(Page 2 of 2)	
	D	5300 Iownei	Magnetrol Belmont rs Grove,	Road Illino	is		F C	•	Total Depth Field Supervisor	: 30 Feet : Kim Janson, PG
	MPE Project M061401							Junia Eccation . Goder viso at earling		
Depth in Feet	% Recovery	PID (ppm)	PID (ppn	Water Levels	Blow Count	nscs	GRAPHIC	DESCRIPTION	Laboratory Analysis	Well: MW-1 Elev.:
20-	100%		9		3 6 8 9 3	CL		CLAY, same as above except with fine- to coarse-grained sand at 22' to medium-grained gravel.		
22	100%		θ		6 9 3 4 6 8 3			Moderately soft.		
25 26	50%	0.0		***************************************	3 4 7 9	CL		Moderately stiff	1	
27-	50%	0.1	O		4 6 9 2	CL.				
29	50%	0.0	ф		7					
30	<u> </u>	<u>.</u>	<u> </u>		9	<u></u>	ľZ	End of boring at 30 feet.		
31										
32										
33-										
33- 34-										
35										
36	1									
End of	Boring surface	at 30 F e water	Feet Below encounter	Grou	ad Su eams	ırface (E of sanc	GS) and gr	avel identified at		

varying depths.

Interval from 15 to 30 feet bentonited with no casing.

Note: PID had background reading from 0.1 to 0.5 in 2- to 4-foot interval.

Mostardi Platt Environmental									LOG OF BORING HS-2 (Page 1 of 1)			
	D	5300 Iownei	Be rs (gnetrol Imont F Grove, I	llino	is			•	al Depth d Supervisor	: 14 Feel : Jeff Meyerhoff	
	<u>ν</u>	APE P	roje	ect M06	140				During Education . Last or building between parking for an	iid sidewark		
Depth in Feet	% Recovery	PiD (ppm)		D (ppm	ater L	Blow Count	nscs	GRAPHIC	DESCRIPTION	Laboratory Analysis	Well: MW-2 Elev.:	
0-					T	2	T P	11	GRASS, grass and topsoil			
1	90%	0.0	9			2 4 4	FL	\bigotimes	FILL, light brown to dark brown clayey fill, medium plasticity, trace coarse-grained sand, no odors.		Bentonite	
2- - 3-	75%	0.0	φ			4	CL		CLAY, light brown clay, medium plasticity, trace fine to medium sand, no odors.			
4-						5			CLAY, gray and brown mottled clay, dense, trace silt and fine-grained sand, no odors.			
5-	95%	0.2	0			6 7 11	CL					
6- - 7- -	95%	0.0	0			3 4 5	CL		CLAY, dense brown clay to approximately 7', moist sandy clay seam at approximately 8', no odors.		PVC Riser	
8 8						6 2			CLAYEY SILT, brown to olive gray clayey silt, some small rock, fine- to medium-grained sand, moist, softer than 6- to 8-foot interval, no odors.		—Sand Pack	
9-	95%	0.0	þ			3 3 9	ML/CL		moist, soiler than 6- to 6-root interval, no odors.		Slotted Screen	
10	95%	0.5			_	7 17 13	CL		CLAY, brown clay, large 1" to 1.5" rock, trace sand, soft, plastic, sample very moist to slightly wet at 11.5' to 12', no odors.	VOCs		
12-						18 3	CL/ML		SILTY CLAY, sandy brown silty clay, first 6" moist to slightly wet, no odors.			
13-	95%	0.0				6 6 8	CL	//	CLAY, gray clay with brown silt, medium- to coarse-grained sand, dense, dry, no odors.			
14-		L	L <u>i.</u> _		<u></u>				End of boring at 14 feet.			
Subsuri	ace wa	iter enc	our	Below G ntered at boring o	11.5	feet		SS)				

Mostardi Platt									LOG OF BORING HS-3 (Page 1 of 2)			
		5300 Oowner	s Gro	ont Rove, II	linoi			Н D D	ate Drilled : April 12, 2006 Total Depth ble Diameter : 3.25 Inches Field Supervisor filling Method : Hollow Stem Auger filling Company : CS Drilling pring Location : South side of Property next to GP-6		0 Feet im Janson, PG	
Depth in Feet	MPE Project M061401 Water Levels USCS Where (bown) 10 10 10 10 10 10 10 10 10 10 10 10 10							GRAPHIC	DESCRIPTION Laboratory Analysis	1	Well: MW-3 Elev.:	
							NS	GS)	See soil boring log GP-6 for soil description.		—PVC Riser —Bentonite	
50050	Subsurface water encountered at 29 feet bgs.											

) n	∕lo:	st	arc	II	PI:	att al		LOG OF BORIN	G HS-3	(Page 2 of 2)
	D	5300 lowner	Beln rs Gr	netrol nont R rove, li	llinoi			H D	• • •	al Depth d Supervisor	: 30 Feet : Kim Janson, PG
	IV.	ME P	rojed	t M06	140	П		l ^p	onng Location . South side of Property flext to Gr-9		
Depth in Feet	% Recovery	PID (ppm)		(ppm)	ater L	Blow Count	nscs	GRAPHIC	DESCRIPTION	Laboratory Analysis	Well: MW-3 Elev.:
16-	100%	2.8	9			2 5 7			CLAY, gray clay, some silt, trace fine-grained sand, trace coarse-grained gravel, stiff, moderate plasticity, dry, no odors.	HOLD	PVC Riser
18-	100%	1.1			***************************************	6 3 4			No gravel.		— Bentonite
20-			Management ()	***************************************	***************************************	7 8 4 7	CL		Occasional coarse-grained gravel.		11111111111111111111111111111111111111
21-	40%	1.3	0			8 9 9					
23-	90%	2.0	9		***************************************	5 7 4			Trace sand and coarse-grained gravel.	***************************************	Sand Pack
	100%	1.3	9			5 7 7	CL		CLAY, gray clay with trace brown, trace silt, trace sand, and gravel, fine-grained sand and gravel fragments on outside of sample, stiff, high plasticity, dry, no odors.		Slotted Scree
26 27	50%	0.6		***************************************	***************************************	10 6 5 23			CLAY, gray clay, occasional silt, trace fine-grained sand and coarse-grained gravel, stiff, high plasticity, dry, no odors.	HOLD	
28-			***************************************			21 6 6	CL.				
29 ⁻ 30-	100%	1.3	р.		V	l l	SP/SW		SAND, gray sand, fine- to coarse-grained, well- to poorly-sorted, very moist to wet, no odors. CLAY, gray clay, occasional silt, stiff, moderate		
31									\plasticity, dry, no odors. End of boring at 30 feet.		
28 - 29 - 30 - 31 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -								GS)			

Appendix D: Analytical Summary Tables

Table 1 VOLATILE ORGANIC COMPOUNDS SOIL ANALYTICAL SUMMARY 5300 Belmont Road Downers Grove, Illinois

		Tier I	Property Soil R	emediation Obj	ectives ²							l l	***************************************		l						
						onent of the	Two,	ł													
	Industrial/C	Commercial			Groundwat	er Ingestion	Former					Chemis	cal and	Former							
	Prop	erty	Constructi	on Worker	Exposur	re Route	Heating Oil					Former So		Diked TCE							
	Ingestion	Inhalation	Ingestion	Inhalation			Tanks Area	Suspec	t Former De	greaser Uni	it Areas	Waste Sto		Tank		Access D	oor Areas		Proper	rty Boundar	v Areas
	Exposure	Exposure	Exposure	Exposure			GP-1°	GP-2	GP-3	GP-8	GP-8	GP-4	GP-7	GP-5	GP-9	GP-10	GP-11	GP-11	GP-6	HS-1	HS-2
***************************************	Route	Route	Route	Route	Class 1	Class II	4 to 6 ^d	0 to 4	6 to 8	0 to 2	6 to 8	4 to 8	0 to 2	4 to 6	8 to 10	0 to 4	0 to 2	12 to 14	4 to 6	4 to 6	10 to 12
Analyte	(mg/kg) ^v	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Acetone	200,000	100,000	200,000	100,000	16	16	<1.52 ^e	<0.0294	<0.024	<0.0231	<0.0239	0.0237 ^g	<0.0234	<0.0247	<0.0249	<0.028	<0.022	<0.0205	<0.0229	<0.023	<0.0224
Benzene	100	1.6	2,300	2.2	0.03	0.17	<0.305	<0.00588	<0.0048	<0.00463	<0.00478	<0.00423	<0.00469	<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
Bromodichloromethane	92	3,000	2,000	3,000	0.6	0.6	<0.305	<0.00588	<0.0048	<0.00463	<0.00478	<0.00423	<0.00469	<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
Bromoform	720	100	16,000	140	0.8	0.8	<0.305	<0.00588	<0.0048	<0.00463	<0.00478	<0.00423	<0.00469	<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
Bromomethane (methyl bromide)	2,900	15	1,000	3.9	0.2	1.2	<0.305	<0.00588	<0.0048	<0.00463	<0.00478	<0.00423	<0.00469	<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
2-Butanone (methyl ethyl ketone)							<0.609	<0.0118	<0.0096	<0.00925	<0.00956	<0.00846	<0.00938	<0.00987	<0.00997	<0.0112	<0.00881	<0.00821	<0.00917	<0.00918	<0.00898
Carbon disulfide	200,000	720	20,000	9	32	160	<0.305	<0.00588	<0.0048	<0.00463	<0.00478	<0.00423	<0.00469	<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
Carbon tetrachloride	44	0.64	410	0.90	0.07	0.33	<0.305	<0.00588	<0.0048	<0.00463	<0.00478	<0.00423	<0.00469	<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
Chlorobenzene	41,000	210	4,100	1.3	1	6.5	<0.305	<0.00588	<0.0048	<0.00463	<0.00478	<0.00423	<0.00469	<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	< 0.00459	<0.00459	<0.00449
Chlorodibromomethane	41,000	1,300	41,000	1,300	0.4	0.4	<0.305	<0.00588	<0.0048	<0.00463	<0.00478	< 0.00423	<0.00469	<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
Chloroethane						***	<0.305	<0.00588	<0.0048	<0.00463	<0.00478	<0.00423	<0.00469	<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
Chloroform	940	0.54	2,000	0.76	0.6	2.9	<0.305	<0.00588	<0.0048	<0.00463	<0.00478	<0.00423	<0.00469	<0.00494	<0.00498	<0.00561	0.00589	<0.0041	<0.00459	<0.00459	<0.00449
Chloromethane							<0.305	<0.00588	<0.0048	<0.00463	<0.00478	<0.00423	<0.00469	<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
1.1-Dichloroethane	200,000	1,700	200,000	130	23	110	<0.305	<0.00588	<0.0048	<0.00463	0.0122	<0.00423	<0.00469	<0.00494	<0.00498	<0.00561	0.963	<0.0041	<0.00459	<0.00459	<0.00449
1.2-Dichloroethane	63	0.70	1,400	0.99	0.02	0.1	<0.305	<0.00588	<0.0048	<0.00463	<0.00478	<0.00423	<0.00469	<0.00494	<0.00498	<0.00561	0.0101	<0.0041	<0.00459	<0.00459	<0.00449
1.1-Dichloroethene	18,000	1,500	1.800	300	0.06	0.3	<0.305	<0.00588	<0.0048	<0.00463	0.011	<0.00423	< 0.00469	<0.00494	<0.00498	<0.00561	0.716	<0.0041	<0.00459	<0.00459	<0.00449
cis 1,2-Dichloroethene	20,000	1,200	20,000	1,200	0.4	1.1	<0.305	<0.00588	0.054	<0.00463	< 0.00478	<0.00423	<0.00469	0.228	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
trans 1,2-Dichloroethene	41,000	3,100	41,000	3,100	0.7	3.4	<0.305	<0.00588	0.00749	<0.00463	<0.00478	<0.00423	<0.00469	<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
1.2-Dichloropropane	84	23	1,800	0.5	0.03	0.15	<0.305	<0.00588	<0.0048	<0.00463	<0.00478		<0.00469	<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
1,3-Dichloropropene (cis, trans)	57	2.1	1,200	0.39	0.004	0.02	<0.183	<0.00353	<0.00288	<0.00278	<0.00287	<0.00254	<0.00281	<0.00296	<0.00299	<0.00336	<0.00264	<0.00246	<0.00275	<0.00275	<0.00269
Ethylbenzene	200,000	400	20,000	58	13	19	<0.305	<0.00588	<0.0048	<0.00463	<0.00478	I	< 0.00469	<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
(2-Hexanone)				44-4			<0.609	<0.0118	<0.0096	<0.00925	<0.00956	<0.00846	<0.00938	<0.00987	<0.00997	<0.0112	<0.00881	<0.00821	<0.00917	<0.00918	<0.00898
Methylene chloride	760	24	12.000	34	0.02	0.2	< 0.305	<0.00588	<0.0048	< 0.00463	< 0.00478	<0.00423	< 0.00469	<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	< 0.00449
(4-Methyl-2-pentanone)			***			-++	< 0.609	<0.0118	<0.0096	<0.00925	<0.00956			<0.00987	<0.00997	<0.0112	<0.00881	<0.00821	<0.00917	<0.00918	<0.00898
Methyl-tertiary-butyl-ether	20,000	8,800	2.000	140	0.32	0.32	<0.305	<0.00588	<0.0048	<0.00463	<0.00478	<0.00423		<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
Styrene	410,000	1,500	41,000	430	4	18	<0.305	<0.00588	<0.0048	<0.00463		<0.00423		<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
(1.1.2.2-Tetrachloroethane)		707					<0.305	<0.00588	<0.0048	<0.00463		·		<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	< 0.00459	<0.00459	< 0.00449
Tetrachloroethene (perchloroethene)	110	20	2,400	28	0.06	0.3	<0.305	0.109	<0.0048	<0.00463				<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
Toluene	410,000	650	410,000	42	12	29	<0.305	<0.00588	<0.0048	<0.00463		<0.00423		<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	< 0.00449
1,1,1-Trichlorethane		1,200		1.200	2	9.6	<0.305	<0.00588	0.0131	0.0299	0.202	< 0.00423		<0.00494	<0.00498	<0.00561	10.8	<0.0041	<0.00459	<0.00459	< 0.00449
1.1.2-Trichloroethane	8,200	1,800	8.200	1.800	0.02	0.3	<0.305	<0.00588	<0.0048	<0.00463	<0.00478	< 0.00423		<0.00494	<0.00498	<0.00561	0.0203	<0.0041	<0.00459	<0.00459	< 0.00449
Trichloroethene	520	8.9	1,200	12	0.06	0.3	<0.305	32.7	0.123	<0.00463	< 0.00478	 		16.8	<0.00498	<0.00561	0.0203	<0.0041	<0.00459	<0.00459	<0.00449
Trichlorofluoromethane	-22			12			<0.305	<0.00588	<0.0048	<0.00463		<0.00423		<0.00494	<0.00498	<0.00561	<0.0044	<0.0041	<0.00459	<0.00459	<0.00449
Vinyl acetate	1,000,000	1,600	200,000	10	170	170	<0.609	<0.0118	<0.0096	<0.00925	<0.00956	 	····	<0.00494	<0.00498	<0.0112	<0.00881	<0.0041	<0.00439	<0.00439	<0.00449
Vinyi acetate Vinyi acetate Vinyi acetate	7.9	1.1	170	1.1	0.01	0.07	<0.305	<0.00588	<0.0038	<0.00323	<0.00338	1	***************************************	<0.00987	<0.00997	<0.00561	<0.0044	<0.00621	<0.00917	<0.00918	<0.00449
Total Xylenes	1,000,000	410	410,000	410	150	150	<0.609	<0.0118				<0.00423		<0.00494	<0.00498	<0.00361	<0.0044	<0.0041	· · · · · · · · · · · · · · · · · · ·	<0.00459	
t con rejusios L	.,000,000	110 1	710,000			120	1 -0.003	-0.0110	\0.000U	しんししいい	*0.00530	[~U.UUO+O]	~0.00336	_0.0030/	~U.UU33/	<u> </u>		~U.UU0Z1		~0.00918	~0.00098

Bold numbers exceed lowest commercial/industrial and/or construction worker soil remediation objective.

^aTitle 35, Illinois Administrative Code, Part 742, entitled Tiered Approach to Corrective Action Objectives

^bMilligrams per kilogram

^cSoil boring number

^dDepth of sample collection in feet below ground surface

Not detected at the reported detection limit

Not listed

gldentified as a laboratory artifact

Table 2 VOLATILE ORGANIC COMPOUNDS GROUNDWATER ANALYTICAL SUMMARY

2300 Belmont Road Downers Grove, Illinois

	Tier 1 Gre	oundwater			4/10/2006	4/11/2006	4/12/2006	4/13/2006	4/14/2006
	Remediation	Objectives ^a							
	Class I	Class II	MW-1°	MW-2	Trip Blank				
Analyte	(mg/L) ^b	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Acetone	0.7	0.7	<0.01 ^a	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzene	0.005	0.025	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Bromodichloromethane	0.0002	0.0002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Bromoform	0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Bromomethane (methyl bromide)	0.0098	0.049	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
2-Butanone (methyl ethyl ketone)			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Carbon disulfide	0.7	3.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Carbon tetrachloride	0.005	0.025	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Chlorobenzene	0.1	0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Chlorodibromoethane	0.4	0.4	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Chloroethane			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Chloroform	0.0002	0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Chloromethane			<0.002	<0.002	<0.002	<0,002	<0.002	<0.002	<0.002
1,1-Dichloroethane	0.7	3.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1,2-Dichloroethane	0.005	0.025	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1,1-Dichloroethene	0.007	0.035	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
cis 1,2-Dichloroethene	0.07	0.2	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
trans 1,2-Dichloroethene	0.1	0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1,2-Dichloropropane	0.005	0.025	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Ethylbenzene	0.7	1,0	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
(2-Hexanone)		_	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Methylene chloride	0.005	0.05	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
(4-Methyl-2-pentanone)			<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Methyl-tertiary-butyl-ether	0.070	0.070	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Styrene	0.1	0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
(1,1,2,2-Tetrachloroethane)			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Tetrachloroethene (perchloroethene)	0.005	0.025	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Toluene	1.0	2.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1,1,1-Trichlorethane	0.2	1.0	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
1,1,2-Trichloroethane	0.005	0.05	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Trichloroethene	0.005	0.025	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Trichlorofluoromethane			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vinyl acetate	7.0	7.0	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vinyl chloride	0.002	0.01	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Total Xylenes	10	10	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004

Bold numbers exceed lowest remediation objective.

VOC Groundwater MPE Project M061401

^aTitle 35, Illinois Administrative Code, Part 742, entitled Tiered Approach to Corrective Action Objectives

^bMilligrams per liter

^cMonitoring well number

^dNot detected at the reported detection limit

^cNot listed

Appendix E: Laboratory Analytical Reports

18 April 2006

1380 Busch Parkway Buffalo Grove, Illinois 60089

Lab ID: B604127

Phone: (847) 808-7766

Fax: (847) 808-7772

Kim Janson Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

RE: Sachnoff & Weaver Phase II

Enclosed are the results of analyses for samples received by the laboratory on 04/11/06. The sample results relate only to the tested analytes of interest and to the sample as received by the laboratory. At the time of analysis, the laboratory was in compliance with current NELAP standards and held accreditation for all analyses performed unless noted by a qualifier. The laboratory's Illinois NELAP accreditation number is 100261.

This report can not be reproduced, except in full, without written approval from the laboratory. If you have any questions concerning this report, please feel free to contact Jim Knapp or Margaret Kniest.

Sincerely,

TestAmerica Analytical Testing Corporation

Julie Meyer

Laboratory Director

James Knapp

Quality Assurance Manager

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604127 Reported: 04/18/06 17:34

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GP-1 (4-6)	B604127-01	Soil	04/10/06 11:05	04/11/06 10:42
GP-2 (0-4)	B604127-02	Soil	04/10/06 19:07	04/11/06 10:42
GP-3 (6-8)	B604127-03	Soil	04/10/06 20:47	04/11/06 10:42
Trip Blank	B604127-04	Water	04/10/06 00:00	04/11/06 10:42
111p 25101111				

Sample Receipt Notes

Please note that the chain of custody (COC) included with this report is considered part of the report. The data user should review any comments or notes made on the COC. Any receipt issues found by the laboratory that are not noted on the COC will be stated below.

All sample container custody seals are intact.

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by:

Margaret Knied

Margaret Kniest, Extractionist

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604127 **Reported:** 04/18/06 17:34

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Rep Result	orting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-1 (4-6) (B604127-01RE2) Soil	Sampled: 04/10/06 11:05	Rece	ived: 04/1	1/06 10:42					G23, QC
Acetone	ND	1520	ug/kg dry	50	6040335	04/17/06	04/18/06	EPA 8260B	
Benzenc	ND	305	u	11	11	n	U	"	
Bromodichloromethane	ND	305	**	n	U	u	21	п	
Bromoform	ND	305	н	Ħ	u	tt	Ħ	15	
Bromomethane	ND	305	"	n	**	n	ti.	п	
2-Butanone	ND	609	**	n	D	n	**	12	
Carbon disulfide	ND	305	17	**	0	\$1	н	n	
Carbon tetrachloride	ND	305	w	H	ti	H	rt	"	
Chlorobenzene	ND	305	u	11	H	U	**	н	
Chlorodibromomethane	ND	305	11	"	U	41	**	17	
Chloroethane	ND	305	1+	11	11	**	**		
Chloroform	ND	305	0	n	н	br	11	u	
Chloromethane	ND	305	ш	u	O.	71	†*	77	
1.1-Dichloroethane	ND	305	17	**	o	p	Ħ	п	
1,2-Dichloroethane	ND	305		**	**	P	1)	"	
1,1-Dichloroethene	ND	305	n	n	ry.	*1	11	11	
cis-1,2-Dichloroethene	ND	305	n	ķi	u	н	**	19	
trans-1,2-Dichloroethene	ND	305	**	Ħ	Ħ	"	н	"	
1,2-Dichloropropane	ND	305	"	ht	H	"	0	"	
1,3-Dichloropropene (cis + trans)	ND	183	**	U	v	**	н	**	
Ethylbenzene	ND	305	11	17	11	н	PT	n	
2-Hexanone	ND	609	,,	n	**	v		"	
Methylene chloride	ND	305	n	b	"	U	**	11	
4-Methyl-2-pentanone	ND	609	*1	"	"	H	12	11	
Methyl tert-butyl ether	ND	305	**	**	**	H	v	19	
Styrene	ND	305	n	n	p	D	o	u	
1,1,2,2-Tetrachloroethane	ND	305	**	a	U	79	71	**	
Tetrachloroethene	ND	305	11	**	**		17	n	
Toluene	ND	305	н	**	ÞŤ	n,	17	n	
1,1,1-Trichloroethane	ND	305		U	ti ti	**	н	н	
1,1,2-Trichloroethane	ND	305	**	"	0	n	f*	"	
Trichloroethene	ND	305		n	**		17	n	
Trichlorofluoromethane	ND	305		D		0	11	u	
Vinyl acetate	ND	609		U	· ·	н	†#	11	
Vinyl chloride	ND	305		**	ч	"	11	n	
Total Xylenes	ND	609		n	H	"	v	n	
		118 %		7-150	Pt	jı	41	n	
Surrogate: Dibromofluoromethane		135 %		3-150	,,	a	. "	"	
Surrogate: 1,2-Dichloroethane-d4		118 %		7-150	,,		,,	н	
Surrogate: Toluene-d8		115 70		7-130				**	

91.7%

36.5-147

TestAmerica Analytical - Buffalo Grove

Surrogate: 4-Bromofluorobenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Page 2 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604127 **Reported:** 04/18/06 17:34

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-2 (0-4) (B604127-02) Soil	Sampled: 04/10/06 19:07	Received	: 04/11/06	10:42					QC
Acetone	ND	29.4	ug/kg dry	1	6040335	04/17/06	04/18/06	EPA 8260B	
Benzene	ND	5.88	п	U	**	D	*1	н	
Bromodichloromethane	ND	5.88	**	"	n	n	H	n	
Bromoform	ND	5.88	11	**	D	11	11	n	
Bromomethane	ND	5.88	H	н	(1	Ħ	19	U	
2-Butanone	ND	11.8	•	u	**	"	11	н	
Carbon disulfide	ND	5.88	71	H	11	"	**	п	
Carbon tetrachloride	ND	5.88	***	11	0	11		ıı	
Chlorobenzene	ND	5.88	17	, n	#1	n	**	4	
Chlorodibromomethane	ND	5.88	11	n	IT	u	**	н	
Chloroethane	ND	5.88	11	+1	u	0	11	"	
Chloroform	ND	5.88	n	н		11	0	"	
Chloromethane	ND	5.88	n	11	***		**	u	
1.1-Dichloroethane	ND	5.88	n	n	В		p\$	н	
1,2-Dichloroethane	ND	5.88	***	11	v	"	D	*	
1,1-Dichloroethene	ND	5.88	**	"	"	**	"		
cis-1,2-Dichloroethene	ND	5.88	D	0	17	tt.	**	**	
trans-1,2-Dichloroethene	ND	5.88	0	11	10	v	"	н	
1,2-Dichloropropane	ND	5.88	**	11	n	Ħ	li .	D.	
1,3-Dichloropropene (cis + trans	ND ND	3.53	n	n	**	*	**		
Ethylbenzene	ND	5.88	11	"	**	0	**	**	
2-Hexanone	ND	11.8	ш	**	11	11	v	**	
Methylene chloride	ND	5.88	71	*1	"	*	•	n	
4-Methyl-2-pentanone	ND	11.8	11	"	**	"	**	"	
Methyl tert-butyl ether	ND	5.88	D	p	n	n	*	**	
Styrene	ND	5.88	и	"	19	Ħ	D	**	
1,1,2,2-Tetrachloroethane	ND	5.88	11	**		81	O.		
Tetrachloroethene	109	5.88	**	11	**	"	**	0	
Toluene	ND	5.88	0	"	**		17	**	
I,1,1-Trichloroethane	ND	5.88	n	**	U	**		n	
1,1,2-Trichloroethane	ND	5.88		Ħ	u	**	71	O	
Trichlorofluoromethane	ND	5.88		"	**	19	**	**	
Vinyl acetate	ND	11.8		"	*	"	n	н	
Vinyl acctate Vinyl chloride	ND	5.88		"		*	•	n	
Total Xylenes	ND	11.8		Ħ	ч	**	*1	D.	
Surrogate: Dibromofluoromethe		80.0 %		D-150	,	"	"	**	
Surrogate: 1,2-Dichloroethane-		91.5 %		5-150	"		n	.,	
Surrogate: Toluene-d8		95.6 %		1-145	**	77	, "	**	
Surrogate: 4-Bromofluorobenze	me	93.7 %		1-137	"	*		•	

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604127 Reported: 04/18/06 17:34

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

	restame	eporting		-			·····		
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-2 (0-4) (B604127-02RE2) Soil	Sampled: 04/10/06 19:0)7 Rece	ived: 04/1	1/06 10:42					QC
Trichloroethene	32700	2940	ug/kg dry	500	6040335	04/18/06	04/18/06	EPA 8260B	
Surrogate: Dibromofluoromethane		81.2 %	40.7-	-150	"	"	"	**	
Surrogate: 1,2-Dichloroethane-d4		97.8 %	44.3-	-150	"	"	"	"	
Surrogate: Toluene-d8		121 %	48.7	-150	**	*	σ	"	
Surrogate: 4-Bromofluorobenzene		108 %	36.5	-147	**	11	н		
GP-3 (6-8) (B604127-03RE1) Soil	Sampled: 04/10/06 20:-	47 Rece	eived: 04/1	1/06 10:42	!				QC
Acetone	ND	24.0	ug/kg dry	ŧ	6040335	04/18/06	04/18/06	EPA 8260B	
Benzene	ND	4.80	li)	n	0	71	**	**	
Bromodichloromethane	ND	4.80	· ·	n	11	n	н	10	
Bromoform	ND	4.80	u	U	**	II	0	u .	
Bromomethane	ND	4.80	**		н	*	**	Ħ	
2-Butanone	ND	9.60	11	17	u	n	18	**	
Carbon disulfide	ND	4.80		H	u	10	n	n	
Carbon tetrachloride	ND	4.80	**	n	t+	U	"	**	
Chlorobenzene	ND	4.80	н		17	**	21	**	
Chlorodibromomethane	ND	4.80	11	**	v	u	**	»	
Chloroethane	ND	4.80	o	18	11	В	bs	1)	
Chloroform	ND	4.80	0	n	H	0	nt .	ft	
Chloromethane	ND	4.80	**	"	n	**	u	**	
1.1-Dichloroethane	ND	4.80	**	**	0	H	***	n	
1,2-Dichloroethane	ND	4.80		*17	41	11	D		
1,1-Dichloroethene	ND	4.80	27	"	77	9	P.	74	
cis-1,2-Dichloroethene	54.0	4.80	17	u	н	**	**	**	
trans-1,2-Dichloroethene	7.49	4.80	н	11	n	n	11	"	
1,2-Dichloropropane	ND	4.80	n	17	и	н	F2	u	
1,3-Dichloropropene (cis + trans)	ND	2.88		D	**	**	D	н	
Ethylbenzene	ND	4.80		U	17	11	n	**	
2-Hexanone	ND	9.60	n	**	n n	H	**	'n	
Methylene chloride	ND	4.80	11	ŧs	**	11	H	n	
4-Methyl-2-pentanone	ND	9.60		p	n	n	h	**	
Methyl tert-butyl ether	ND	4.80		D	n	**	**	79	
Styrene	ND	4.80		**	0	n	**	,,	
1,1,2,2-Tetrachloroethane	ND	4.80		37	u	**	**	"	
Tetrachloroethene	ND	4.80		н	Ħ	O	v	11	
Toluene	ND	4.80		v	,,	**	o	**	
1,1,1-Trichloroethane	13.1	4.80		**	1)	,,	#	*	
1,1,2-Trichloroethane	ND	4.80		11	u	11	· ++	u	
Trichloroethene	123	4.80		D	11	D	ij	н	
Trichlorofluoromethane	ND	4.80)†	•	"	**	
	ND ND	9.60		"	11	57	**	*	
Vinyl acetate	ND ND	4.80		н	*1	et	t†	n	
Vinyl chloride	ND	7.00	•						

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Page 4 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604127

Reported: 04/18/06 17:34

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-3 (6-8) (B604127-03RE1) Soil	Sampled: 04/10/06 20	:47 Rece	ived: 04/1	1/06 10:42	2				QC
Total Xylenes	ND	9.60	ug/kg dry	1	6040335	04/18/06	04/18/06	EPA 8260B	
Surrogate: Dibromofluoromethane		86.9 %		-150	**	"	n	R	
Surrogate: 1,2-Dichloroethane-d4		94.8 %		-150	"	"	"	"	
Surrogate: Toluene-d8		97.5 %		-145	"	**	H H	**	
Surrogate: 4-Bromofluorobenzene		91.7 %	40.4	-137	H	**	н	4	
Trip Blank (B604127-04) Water	Sampled: 04/10/06 00:	00 Recei	ved: 04/11	/06 10:42					
Acetone	ND	10.0	ug/l	1	6040307	04/17/06	04/18/06	EPA 8260B	
Benzene	ND	2.00	**	"	"	"	0	u	
Bromodichloromethane	ND	2.00	н		ts.	94	†1	19	
Bromoform	ND	1.00	v	"	21	bş	75	ţs.	
Bromomethane	ND	2.00		11	H	br .	11	25	
2-Butanone	ND	10.0	19	11	H	"	"	**	
Carbon disulfide	ND	2.00	**	"	U	**	**		
Carbon tetrachloride	ND	2.00	D	(1	n n	H	H	11	
Chlorobenzene	ND	2.00	"	†*	11	bş.	ıt	H	
Chlorodibromomethane	ND	2.00	"	**	**	**	"	n	
Chloroethane	ND	2.00	"	v	11	**	**	**	
Chloroform	ND	2.00		31	u	**	n	4	
Chloromethane	ND	2.00		14	n	n	II.	н	
1.1-Dichloroethane	ND	2.00	"	н	н	U	II	n	
1,2-Dichloroethane	ND	2.00	**	n	17	11	17	•	
1.1-Dichloroethene	ND	2.00	11	O		#	н	**	
cis-1,2-Dichloroethene	ND	2.00	11	,,	u	H	ii.	**	
trans-1,2-Dichloroethene	ND	2.00	0	**	*1	D	n	"	
1,2-Dichloropropane	ND	2.00	**	H	**	**	n		
1,3-Dichloropropene (cis + trans)	ND	2.00	51		11	**	***		
Ethylbenzene	ND	2.00	n	e		H	ìŢ	Ħ	
2-Hexanone	ND	10.0		**	Ħ	u	U	n	
Methylene chloride	ND	2.00		n	**	"	**	v	
4-Methyl-2-pentanone	ND	10.0		hr	ky	17	**		
Methyl tert-butyl ether	ND	2.00		11	v	В	n	**	
Styrene	ND	2.00		11	**	D	u	PT	
1,1,2,2-Tetrachloroethane	ND	2.00		•	**	**	**	"	
Tetrachloroethene	ND	2.00		n	H	**	**	v	
Toluene	ND	2.00		0	v	n	n	**	
1.1.1-Trichloroethane	ND	2.00		•	**	R	v	н	
1.1.2-Trichloroethane	ND	2.00		**	**		* #	**	
Trichloroethene	ND	2.00		,,	н	**	**	"	
Trichlorofluoromethane	ND	2.00		P	15	ır	н	**	
Vinyl acetate	ND ND	2.00		**	v	n	ır	**	
· · · · · ·	ND ND	2.00			v			11	
Vinyl chloride	ND	2.00	,						

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Page 5 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project Number: M061401 Project Manager: Kim Janson Lab ID: B604127 Reported: 04/18/06 17:34

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Trip Blank (B604127-04) Water	Sampled: 04/10/06 00	:00 Receiv	ed: 04/11	/06 10:42					
Total Xylenes	ND	4.00	មg/l	i	6040307	04/17/06	04/18/06	EPA 8260B	
Surrogate: Dibromofluoromethane		88.0 %	69.8	-133	n	"	D	ŝŧ	
Surrogate: 1,2-Dichloroethane-d4		90.4 %	61.2	-141	"	"	"	12	
Surrogate: Toluene-d8		99.8 %	75.8	-118		"	**	,,	
Surrogate: 4-Bromofluorobenzene		93.0 %	68.9	-123	11	**	R	ø	

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by:

Custody document. This analytical report must be reproduced in its entirety.

Margaret Kniest, Extractionist

The results in this report apply to the samples analyzed in accordance with the chain of

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604127 **Reported:** 04/18/06 17:34

Percent Solids

TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-1 (4-6) (B604127-01) Soil	Sampled: 04/10/06 11:05	Received:	04/11/06	10:42					
% Solids	82.1	0.200	%	ļ	6040206	04/11/06	04/12/06	EPA 5035 7.5	
GP-2 (0-4) (B604127-02) Soil	Sampled: 04/10/06 19:07	Received:	04/11/06	10:42					W- 1
% Solids	85.1	0.200	%	1	6040206	04/11/06	04/12/06	EPA 5035 7.5	
GP-3 (6-8) (B604127-03) Soil	Sampled: 04/10/06 20:47	Received:	04/11/06	10:42					
% Solids	84.8	0.200	%	1	6040206	04/11/06	04/12/06	EPA 5035 7.5	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase Il

Spike

Source

Project Number: M061401 Project Manager: Kim Janson

Reporting

Lab ID: B604127

RPD

%REC

Reported: 04/18/06 17:34

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	Limits	RPD	Limit	Notes
Batch 6040307 - EPA 5030B (P/T)										
Blank (6040307-BLK1)				Prepared:	04/17/06	Analyzed	: 04/18/06			
Acetone	ND	10.0	ug/l							
Benzene	ND	2.00	u							
Bromodichloromethane	ND	2.00	**							
Bromoform	ND	1.00	14							
Bromomethane	ND	2.00	"							
2-Butanone	ND	10.0	**							
Carbon disulfide	ND	2.00	n							
Carbon tetrachloride	ND	2.00								
Chlorobenzene	ND	2.00	32							
Chlorodibromomethane	ND	2.00	17							
Chloroethane	ND	2.00	.,							
Chloroform	ND	2.00	11							
Chloromethane	ND	2.00	0							
1,1-Dichloroethane	ND	2.00								
1,2-Dichloroethane	ND	2.00	**							
1,1-Dichloroethene	ND	2.00	п							
cis-1,2-Dichloroethene	ND	2.00								
trans-1,2-Dichloroethene	ND	2.00	11							
1,2-Dichloropropane	ND	2.00	n							
1,3-Dichloropropene (cis + trans)	ND	2.00	0							
Ethylbenzene	ND	2.00	11							
2-Hexanone	ND	10.0	11							
Methylene chloride	ND	2.00	n							
4-Methyl-2-pentanone	ND	10.0	11							
Methyl tert-butyl ether	ND	2.00	n							
Styrene	ND	2.00								
1,1,2,2-Tetrachioroethane	ND	2.00	tu							
Tetrachloroethene	ND	2.00	n							
Toluene	ND	2.00	"							
1,1,1-Trichloroethane	ND	2.00	11							
1,1,2-Trichloroethane	ND	2.00	"							
Trichloroethene	ND	2.00	ю				•			
Trichlorofluoromethane	ND	2.00	•							
Vinyl acetate	ND	2.00	n							
Vinyl chloride	ND	2.00	17							

TestAmerica Analytical - Buffalo Grove

Approved by:

& Margaret Kniest

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson

Lab ID: B604127 Reported: 04/18/06 17:34

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

		Reporting	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Ours	LEVEI	Mesuil	/UNLC	£_1+31+1.7	*** **		
Batch 6040307 - EPA 5030B (P/T)					,					······································
Blank (6040307-BLK1)				Prepared:	04/17/06	Analyzec	1: 04/18/06			
Total Xylenes	ND	4.00	ug/l							
Surrogate: Dibromofluoromethane	44.4		1)	50.0		88.8	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	44.8			50.0		89.6	61.2-141			
Surrogate: Tolucne-d8	50.0		"	50.0		100	75.8-118			
Surrogate: 4-Bromofluorobenzene	47.4		#	50.0		94.8	68.9-123			
LCS (6040307-BS1)				Prepared:	04/17/06	Analyzed	1: 04/18/06			
Acetone	77.6	10.0	ug/l	100		77.6	10-150			
Benzene	51.1	2.00	**	50.0		102	66-127			
Bromodichloromethane	54.4	2.00	11	50.0		109	70.2-136			
Bromoform	46.6	1.00		50.0		93.2	44.6-150			
Bromomethane	51.6	2.00	11	50.0		103	10-150			
2-Butanone	94.9	10.0	n	100		94.9	10-150			
Carbon disulfide	88.7	2.00		100		88.7	10-150			
Carbon tetrachloride	48.6	2.00	**	50.0		97.2	56.1-137			
Chlorobenzene	52.4	2.00	n	50.0		105	75.3-123			
Chlorodibromomethane	53.3	2.00	u	50.0		107	66.5-140			
Chloroethane	53.8	2.00	11	50.0		108	30.4-150			
Chloroform	48.5	2.00	ÌΤ	50.0		97.0	64.5-135			
Chloromethane	47.7	2.00	o	50.0		95.4	22-150			
1,1-Dichloroethane	47.4	2.00	##	50.0		94.8	57.6-140			
1,2-Dichloroethane	50.0	2.00	17	50.0		100	62-142			
1.1-Dichloroethene	44.4	2.00	ŧi	50.0		88.8	49.4-128			
cis-1,2-Dichloroethene	50.1	2.00	**	50.0		100	69.2-134			
trans-1,2-Dichloroethene	46.7	2.00	17	50.0		93.4	57.6-135			
1,2-Dichloropropane	49.4	2.00	0	50.0		98.8	67.5-132			
1,3-Dichloropropene (cis + trans)	99.7	2.00	**	100		99.7	66.2-137			
Ethylbenzene	51.4	2.00	н	50.0		103	69.5-129			
2-Hexanone	89.0	10.0	•	100		89.0	10-150			
Methylene chloride	46.1	2.00	11	50.0		92.2	43.2-150			
4-Methyl-2-pentanone	93.3	10.0	n	100		93.3	27.2-150			
Methyl tert-butyl ether	44.7	2.00	***	50.0		89.4	66.8-141			
Styrene	51.9	2.00	11	50.0		104	65.6-134			
1,1,2,2-Tetrachloroethane	46.5	2.00	11	50.0		93.0	56-146			
Tetrachloroethene	53.5	2.00	tr.	50.0		107	61.9-133			
Toluene	49.8	2.00	**	50.0		99.6	70.5-123			

TestAmerica Analytical - Buffalo Grove

Approved by:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604127

Reported: 04/18/06 17:34

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040307 - EPA 5030B (P/T)										
LCS (6040307-BS1)				Prepared:	04/17/06	Analyzed	1: 04/18/06	***	The second secon	
1,1,1-Trichloroethane	48.8	2.00	սք/	50.0		97.6	60.1-137			
1,1,2-Trichloroethane	52.1	2.00	u	50.0		104	77-132			
Trichloroethene	53.5	2.00	31	50.0		107	65.3-132			
Trichlorofluoromethane	41.6	2.00	11	50.0		83.2	47.2-150			
Vinyl acetate	87.0	2.00	Ħ	100		87.0	10-150			
Vinyl chloride	45.2	2.00	11	50.0		90.4	39.1-150			
Total Xylenes	154	4.00	12	150		103	64.4-131			
Surrogate: Dibromofluoromethane	42.7		n	50.0		85.4	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	47.4		н	50.0		94.8	61.2-141			
Surrogate: Toluene-d8	50.0		"	50.0		100	75.8-118			
Surrogate: 4-Bromofluorobenzene	52.3		r#	50.0		105	68.9-123			
Matrix Spike (6040307-MS1)	So	urce: B60415	57-01RE1	Prepared	: 04/17/06	Analyze	d: 04/18/06			
Acetone	88.4	10.0	ug/l	100	ND	88.4	10-150			
Benzene	50.5	2.00	**	50.0	ND	101	54.8-135			
Bromodichloromethane	54.3	2.00	**	50.0	ND	109.	63-141			
Bromoform	49.9	1.00	u	50.0	ND	99.8	39.2-150			
Bromomethane	44.3	2.00	11	50.0	ND	88.6	10-150			
2-Butanone	109	10.0	17	100	ND	109	10-150			
Carbon disulfide	90.6	2.00	U	100	ND	90.6	10-150			
Carbon tetrachloride	48.1	2.00	н .	50.0	ND	96.2	50.4-138			
Chlorobenzene	52.9	2.00	H	50.0	ND	106	69.5-127			
Chlorodibromomethane	55.2	2.00	U	50.0	ND	110	61.9-141			
Chloroethane	37.1	2.00	*1	50.0	ND	74.2	18.3-150			
Chloroform	48.5	2.00	17	50.0	ND	97.0	54.1-142			
Chloromethane	48.9	2.00	0	50.0	ND	97.8	19.1-150			
1,1-Dichloroethane	47.1	2.00	**	50.0	ND	94.2	51.9-141			
1,2-Dichloroethane	51.4	2.00	11	50.0	ND	103	55.5-147			
1,1-Dichloroethene	44.8	2.00		50.0	ND	89.6	36.2-135			
cis-1,2-Dichloroethene	49.7	2.00	u	50.0	ND	99.4	53.1-146			
trans-1,2-Dichloroethene	47.5	2.00	н	50.0	ND	95.0	53.7-131			
1,2-Dichloropropane	48.6	2.00	11	50.0	ND	97.2	60.6-137			
1,3-Dichloropropene (cis + trans)	99.9	2.00	· ·	100	ND	99.9	16.7-150			
Ethylbenzene	51.0	2.00	**	50.0	ND	102	62.8-133			
2-Hexanone	97.2	10.0	15	100	ND	97.2	11.6-148			
Methylene chloride	46.7	2.00	"	50.0	ND	93.4	33.8-150			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Approved by:

Margaret Kniest, Extractionist

Page 10 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604127 **Reported:** 04/18/06 17:34

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040307 - EPA 5030B (P/T)					······································	<u> </u>				
Matrix Spike (6040307-MS1)	Sou	rce: B60415	7-01RE1	Prepared:	04/17/06	Analyzed	: 04/18/06			
4-Methyl-2-pentanone	98.8	10.0	ug/l	100	ND	98.8	12.1-150			
Methyl tert-butyl ether	46.7	2.00	**	50.0	ND	93.4	52.6-150			
Styrene	48.5	2.00	H	50.0	ND	97.0	48.8-144			
1,1,2,2-Tetrachloroethane	51.8	2.00	11	50.0	ND	104	56.8-150			
Tetrachloroethene	69.5	2.00	"	50.0	19.4	100	50.8-136			
Toluene	49.5	2.00	*1	50.0	ND	99.0	57.9-131			
1,1,1-Trichloroethane	47.8	2.00	n	50.0	ND	95.6	53.3-137			
1,1,2-Trichloroethane	53.5	2.00	v	50.0	ND	107	63.7-140			
Trichloroethene	51.1	2.00	"	50.0	0.730	101	47.2-131			
Trichlorofluoromethane	44.3	2.00	11	50.0	ND	88.6	10.8-150			
Vinyl acetate	100	2.00	n	100	ND	100	10-150			
Vinyl chloride	45.1	2.00	1)	50.0	ND	90.2	13-150			
Total Xylenes	152	4.00	v	150	ND	101	45.9-146			
Surrogate: Dibromofluoromethane	44.1	and the second s	17	50.0		88.2	69.8-133		<i>y</i>	
Surrogate: 1,2-Dichloroethane-d4	48.4		**	50.0		96.8	61.2-141			
Surrogate: Toluene-d8	49.6		"	50.0		99,2	75.8-118			
Surrogate: 4-Bromofluorobenzene	53.0		H	50.0		106	68.9-123			
Matrix Spike Dup (6040307-MSD1)	Sou	rce: B60415	57-01REI	Prepared	: 04/17/06	Analyze	1: 04/18/06			
Acetone	82.0	10.0	ug/l	100	ND	82.0	10-150	7.51	40	
Benzene	49.5	2.00	**	50.0	ND	99.0	54.8-135	2.00	31.9	
Bromodichloromethane	52.4	2.00	"	50.0	ND	105	63-141	3.56	28.2	
Bromoform	48.0	1.00	11	50.0	ND	96.0	39.2-150	3.88	29.3	
Bromomethane	47.3	2.00	**	50.0	ND	94.6	10-150	6.55	4()	
2-Butanone	103	10.0)7	100	ND	103	10-150	5.66	40	
Carbon disulfide	88.9	2.00	v	100	ND	88.9	10-150	1.89	40	
Carbon tetrachloride	46.9	2.00		50.0	ND	93.8	50.4-138	2.53	35.1	
Chlorobenzene	51.2	2.00	н	50.0	ND	102	69.5-127	3.27	38.4	
Chlorodibromomethane	54.0	2.00	н	50.0	ND	108	61.9-141	2.20	29.3	
Chloroethane	37.3	2.00	"	50.0	ND	74.6	18.3-150	0.538	40	
Chloroform	47.7	2.00	v	50.0	ND	95.4	54.1-142	1.66	29.1	
Chloromethane	47.8	2.00	••	50.0	ND	95.6	19.1-150	2.28	40	
1.1-Dichloroethane	45.5	2.00	u	50.0	ND	91.0	51.9-141	3.46	27.6	
1.2-Dichloroethane	50.0	2.00	31	50.0	ND	100	55.5-147	2.76	25.2	
1,1-Dichloroethene	44.4	2.00		50.0	ND	88.8	36.2-135	0.897	33.3	
eis-1,2-Dichloroethene	48.9	2.00	п	50.0	ND	97.8	53.1-146	1.62	29.2	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Page 11 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Spike

Source

Project Number: M061401 Project Manager: Kim Janson

Reporting

Lab ID: B604127

RPD

%REC

Reported: 04/18/06 17:34

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6040307 - EPA 5030B (P/T)						······································		•		
Matrix Spike Dup (6040307-MSD1)	So	urce: B60415	7-01RE1							
rans-1,2-Dichloroethene	45.7	2.00	u <u>g</u> /l	50.0	ND	91.4	53.7-131	3.86	32	
,2-Dichloropropane	48.0	2.00	11	50.0	ND	96.0	60.6-137	1.24	26.8	
,3-Dichloropropene (cis + trans)	97.9	2.00)tr	100	ND	97.9	16.7-150	2.02	40	
Ethylbenzene	49.8	2.00	11	50.0	ND	99.6	62.8-133	2.38	40	
2-Hexanone	93.3	10.0	71	100	ND	93.3	11.6-148	4.09	4()	
Methylene chloride	44.8	2.00	IT	50.0	ND	89.6	33.8-150	4.15	36.8	
4-Methyl-2-pentanone	94.9	10.0	**	100	ND	94.9	12.1-150	4.03	40	
Methyl tert-butyl ether	44.7	2.00	n	50.0	ND	89.4	52.6-150	4.38	40	
Styrene	47.8	2.00		50.0	ND	95.6	48.8-144	1.45	40	
1,1,2,2-Tetrachloroethane	49.3	2.00	н	50.0	ND	98.6	56.8-150	4.95	25	
Tetrachloroethene	68.4	2.00	17	50.0	19.4	98.0	50.8-136	1.60	40	
Toluene	48.0	2.00		50.0	ND	96.0	57.9-131	3.08	38.7	
I.J.1-Trichloroethane	47.1	2.00	**	50.0	ND	94.2	53.3-137	1.48	38.2	
1.1.2-Trichloroethane	51.6	2.00	"	50.0	ND	103	63.7-140	3.62	27.4	
Trichloroethene	50.4	2.00		50.0	0.730	99.3	47.2-131	1.38	40	
Trichlorofluoromethane	41.4	2.00	н	50.0	ND	82.8	10.8-150	6.77	40	
Vinyl acetate	93.9	2.00	o	100	ND	93.9	10-150	6.29	40	
Vinyl chloride	44.2	2.00	15	50.0	ND	88.4	13-150	2.02	40	
Total Xylenes	148	4.00	н	150	ND	98.7	45.9-146	2.67	40	
Surrogate: Dibromofluoromethane	45.2		0	50.0		90.4	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	48.3		и	50.0		96.6	61.2-141			
Surrogate: Toluene-d8	49.5		"	50.0		99.0	75.8-118			
Surrogate: 4-Bromofluorobenzene	52.7		"	50.0		105	68.9-123			
Batch 6040335 - EPA 5035B [P/T]								·····		
Blank (6040335-BLK1)				Prepared	1: 04/17/00	5 Analyze	:d: 04/18/06			
Acetone	25.7	25.0								
Benzene	ND	5.00	o							
Bromodichloromethane	ND	5.00	**							
Bromoform	ND	5.00	w							
Bromomethane	ND	5.00	**							
2-Butanone	ND	10.0	*1							
Carbon disulfide	ND	5.00	v							

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Carbon tetrachloride

Chlorobenzene

Margaret Kniest, Extractionist

ND

ND

5.00

5.00

Page 12 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604127

Reported: 04/18/06 17:34

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

		Reporting		Spike	Source	ov D C C	%REC	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RTD	E-11111	,,,,,,,,
Batch 6040335 - EPA 5035B [P/T]					***************************************					
Blank (6040335-BLK1)				Prepared:	04/17/06	Analyzed	: 04/18/06			
Chlorodibromomethane	ND	5.00	ug/kg wet							
Chloroethane	ND	5.00	**							
Chloroform	ND	5.00	н							
Chloromethane	ND	5.00	.,							
1,1-Dichloroethane	ND	5.00	**							
1,2-Dichloroethane	ND	5.00	O.							
1,1-Dichloroethene	ND	5.00	**							
cis-1,2-Dichloroethene	ND	5.00	n							
trans-1,2-Dichloroethene	ND	5.00	11							
1,2-Dichloropropane	ND	5.00	ž i							
1,3-Dichloropropene (cis + trans)	ND	3.00	v							
Ethylbenzene	ND	5.00	n							
2-Hexanone	ND	10.0								
Methylene chloride	ND	5.00	tı							
4-Methyl-2-pentanone	ND	10.0	n							
Methyl tert-butyl ether	ND	5.00	U							
Styrene	ND	5.00								
1,1,2,2-Tetrachloroethane	ND	5.00								
Tetrachloroethene	ND	5.00	11							
Toluene	ND	5.00	**							
1,1,1-Trichloroethane	ND	5.00								
1,1,2-Trichloroethane	ND	5.00	"							
Trichloroethene	ND	5.00	"							
Trichlorofluoromethane	ND	5.00	п							
Vinyl acetate	ND	10.0	**							
Vinyl chloride	ND	5.00	D							
Total Xylenes	ND	10.0	, "			and the second s				
Surrogate: Dibromofluoromethane	52.2	***	12	50.0		104	55.9-150			
Surrogate: 1,2-Dichloroethane-d4	51.5		"	50.0		103	47.5-150			
Surrogate: Toluene-d8	50.3		**	50.0		101	55.4-145			
Surrogate: 4-Bromofluorobenzene	46.3		,,	50.0		92.6	40.4-137			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Approved by:

Margaret Kniest, Extractionist

Page 13 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson

Lab ID: B604127 Reported: 04/18/06 17:34

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040335 - EPA 5035B [P/T]				Prepared:	04/17/06	Analyzed	1: 04/18/06	****		
LCS (6040335-BS1)	114	25.0	ug/kg wet	100		114	10-150		***************************************	
Acetone	45.2	5.00	11	50.0		90.4	54.8-130			
Benzene Bromodichloromethane	47.8	5.00		50.0		95.6	55.7-137			
Bromoform	48.2	5.00	"	50.0		96.4	48.6-150			
Bromomethane	46.5	5.00	n	50.0		93.0	10-150			
2-Butanone	116	10.0	u	100		116	10-150			
Carbon disulfide	84.6	5.00	**	100		84.6	10-150			
Carbon tetrachloride	44.8	5.00	17	50.0		89.6	43.4-141			
Chlorobenzene	44.6	5.00	11	50.0		89.2	56.2-127			
Chlorodibromomethane	50.8	5.00	11	50.0		102	54.1-142			
Chloroethane	52.5	5.00	**	50.0		105	10-150			
Chloroform	42.7	5.00	n	50.0		85.4	53.7-135			
Chloromethane	43.8	5.00		50.0		87.6	12.4-150			
1.1-Dichloroethane	41.2	5.00	**	50.0		82.4	47.4-139			
1,2-Dichloroethane	46.8	5.00		50.0		93.6	54.6-140			
1,1-Dichloroethene	41.5	5.00	**	50.0		83.0	35.5-135			
cis-1,2-Dichloroethene	43.7	5.00		50.0		87.4	52.5-136			
trans-1,2-Dichloroethene	43.7	5.00		50.0		87.4	47.8-133			
1,2-Dichloropropane	43.2	5.00	ŧr	50.0		86.4	68.3-124			
1,3-Dichloropropene (cis + trans)	86.3	3.00	n	100		86.3	60.9-140			
Ethylbenzene	44.4	5.00	**	50.0		88.8	50.7-127			
2-Hexanone	110	10.0	n	100		110	10-150			
Methylene chloride	43.3	5.00	n n	50.0		86.6	25.4-150			
4-Methyl-2-pentanone	110	10.0	. "	100		110	10-150			
Methyl tert-butyl ether	42.6	5.00	b	50.0		85.2	47.3-150			
Styrene	42.0	5.00	**	50.0		84.0	48.3-127			
1.1.2.2-Tetrachloroethane	51.6	5.00	"	50.0		103	30.4-150			
Tetrachloroethene	45.9	5.00	"	50.0		91.8	46.7-131			
Toluene	43.6	5.00	"	50.0		87.2	53.6-127			
1.1.1-Trichloroethane	44.9	5.00	"	50.0		89.8	49.3-136			
1.1,2-Trichloroethane	49.8	5.00) "	50.0		99.6	57.2-146			
Trichloroethene	48.7	5.00) "	50.0		97.4	55-128			
Trichlorofluoromethane	38.2	5.00) "	50.0		76.4	10-150			
Vinyl acetate	ND	10.0) "	100			10-150			L
Vinyl chloride	42.1	5.00) "	50.0		84.2	28.4-150			

TestAmerica Analytical - Buffalo Grove

Approved by:

Margaret Kniest, Extractionist

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604127 Reported: 04/18/06 17:34

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	KCSun		01112							
Batch 6040335 - EPA 5035B [P/T]										
LCS (6040335-BS1)					04/17/06		1: 04/18/06	,,,,		
Total Xylenes	130	10.0	ug/kg wet	150		86.7	43.1-136			
Surrogate: Dibromofluoromethane	46.5		"	50.0		93.0	55.9-150			
Surrogate: 1,2-Dichloroethane-d4	55.0		n	50.0		110	47.5-150			
Surrogate: Toluene-d8	51.6		,	50.0		103	55.4-145			
Surrogate: 4-Bromofluorobenzene	54.4		"	50.0		109	40.4-137			
LCS Dup (6040335-BSD1)				Prepared:	04/17/06	Analyze	d: 04/18/06			
Acetone	110	25.0	ug/kg wet	100		110	10-150	3.57	35	
Benzene	44.8	5.00	"	50.0		89.6	54.8-130	0.889	35	
Bromodichloromethane	48.2	5.00	**	50.0		96.4	55.7-137	0.833	31.6	
Bromoform	48.0	5.00	11	50.0		96.0	48.6-150	0.416	35	
Bromomethane	46.7	5.00	n	50.0		93.4	10-150	0.429	35	
2-Butanone	112	10.0	**	100		112	10-150	3.51	35	
Carbon disulfide	83.1	5.00	D	100		83.1	10-150	1.79	35	
Carbon tetrachloride	44.9	5.00	21	50.0		89.8	43.4-141	0.223	35	
Chlorobenzene	45.1	5.00	11	50.0		90.2	56.2-127	LH	35	
Chlorodibromomethane	51.7	5.00		50.0		103	54.1-142	1.76	34	
Chloroethane	52.2	5.00		50.0		104	10-150	0.573	35	
Chloroform	42.5	5.00	77	50.0		85.0	53.7-135	0.469	32.2	
Chloromethane	42.2	5.00	1)	50.0		84.4	12.4-150	3.72	35	
1.1-Dichloroethane	40.5	5.00	u	50.0		81.0	47.4-139	1.71	35	
1,2-Dichloroethane	46.8	5.00	17	50.0		93.6	54.6-140	0.00	31.5	
1.1-Dichloroethene	41.1	5.00	n n	50.0		82.2	35.5-135	0.969	35	
cis-1,2-Dichloroethene	42.8	5.00	**	50.0		85.6	52.5-136	2.08	32.9	
trans-1,2-Dichloroethene	43.3	5.00	**	50.0		86.6	47.8-133	0.920	35	
1,2-Dichloropropane	42.7	5.00	, n	50.0		85.4	68.3-124	1.16	27.4	
1,3-Dichloropropene (cis + trans)	85.3	3.00	• "	100		85.3	60.9-140	1.17	35	
Ethylbenzene	44.6	5.00	"	50.0		89.2	50.7-127	0.449	35	
2-Hexanone	110	10.0	11	100		110	10-150	0.00	35	
Methylene chloride	42.8	5.00) "	50.0		85.6	25.4-150	1.16	35	
4-Methyl-2-pentanone	111	10.0	, "	100		111	10-150	0.905	35	
Methyl tert-butyl ether	41.8	5.00	"	50.0		83.6	47.3-150	1.90	35	
Styrene	42.0	5.00) "	50.0		84.0	48.3-127	0.00	35	
1,1,2,2-Tetrachloroethane	51.9	5.00) "	50.0		104	30.4-150	0.580	35	
Tetrachloroethene	45.9	5.00) "	50.0		91.8	46.7-131	0.00	35	
Toluene	44.0	5.00) "	50.0		88.0	53.6-127	0.913	35	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Page 15 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604127

Reported: 04/18/06 17:34

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040335 - EPA 5035B [P/T]			w		Market Market	***************************************				w
LCS Dup (6040335-BSD1)				Prepared:	04/17/06	Analyzec	d: 04/18/06			
1,1,1-Trichloroethane	44.l	5.00	ug/kg wet	50.0		88.2	49.3-136	1.80	35	
1,1,2-Trichloroethane	49.4	5.00	n	50.0		98.8	57.2-146	0.806	30.2	
Trichloroethene	46.8	5.00	11	50.0		93.6	55-128	3.98	35	
Trichlorofluoromethane	37.8	5.00	p	50.0		75.6	10-150	1.05	35	
Vinyl acetate	ND	10.0	11	100			10-150		35	L
Vinyl chloride	41.8	5.00	11	50.0		83.6	28.4-150	0.715	35	
Total Xylenes	131	10.0	,,	150		87.3	43.1-136	0.766	35	
Surrogate: Dibromofluoromethane	44.0			50.0	***************************************	88.0	55.9-150			
Surrogate: 1,2-Dichloroethane-d4	52,9		"	50.0		106	47.5-150			
Surrogate: Toluene-d8	50.0		н	50.0		100	55.4-145			
Surrogate: 4-Bromofluorobenzene	52.6		n	50.0		105	40.4-137			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401

Project Manager: Kim Janson

Lab ID: B604127

Reported: 04/18/06 17:34

Percent Solids - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result		%REC Limits	RPD	RPD Limit	Notes
Batch 6040206 - General Prep										
Blank (6040206-BLK1)				Prepared:	04/11/06	Analyzed:	04/12/06			
% Solids	ND	0.200	96							
Blank (6040206-BLK2)				Prepared:	04/11/06	Analyzed:	04/12/06			
% Solids	ND	0.200	%							
Duplicate (6040206-DUP1)	So	irce: B60411	8-15	Prepared:	04/11/06	Analyzed:	04/12/06			
% Solids	89.8	0.200	%		89.2			0.670	20	
Duplicate (6040206-DUP2)	Sor	arce: B60411	18-16	Prepared	: 04/11/06	Analyzed:	04/12/06			
% Solids	85.1	0.200	9.4		82.8			2.74	20	

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by:

Margaret Knied

Margaret Kniest, Extractionist

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project Number: M061401 Project Manager: Kim Janson Lab ID: B604127 Reported: 04/18/06 17:34

Notes and Definitions

QC The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source method acceptance criteria.

G23 The sample was diluted due to the presence of high concentrations of non-target analytes.

A The concentration of the analyte detected in the sample is characteristic of a laboratory artifact.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

L This quality control measurement is below the laboratory established limit.

H This quality control measurement is above the laboratory established limit.

The laboratory is not NELAP accredited for this analyte by the indicated matrix and method.

The State of Illinois Accrediting Authority does not offer NELAP accreditation for this analyte by the indicated matrix and method.

Note: All analytes, by matrix and method, are accredited following current NELAP standards unless specifically noted by way of a qualifier listed above.

TestAmerica--Buffalo Grove, IL Wisconsin DNR Certification Lab ID: 999917160

TestAmerica--Buffalo Grove, IL NELAP Primary Accreditation: Illinois #100261

TestAmerica--Buffalo Grove, IL NELAP Secondary Accreditation: New Jersey #IL001

TestAmerica--Nashville, TN NELAP Secondary Accreditation: Illinois #200010

TestAmerica--Dayton, OH NELAP Secondary Accreditation: Illinois #200008

TestAmerica--Watertown, WI NELAP Primary Accreditation: Illinois #100453

TestAmerica--Watertown, WI Wisconsin DNR Certification Lab ID: 128053530

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Page 18 of 18

Received by: (lab) SAMPLE ANALYSIS 6y ASTM 2974-87 Organic Carbon Content Printed Name PRESERVATIVE Metals 6010B/7000A Total Priority Pollutant* A0007/80103 Total RCRA Metals * Relinquished by: 2. Pesticides by 8081A REOUESTED **5CB₂ by 8082** SAOC² Py 8270C **AOC® PA 2035/8260B** PNAs by 8310 BLEX by 5035/8260B BTEX by 5035/8021 Received by: 2. Wet Weight Containers Number of 202 زيد and Size SEACUTE **)でみて** Run metal analyses using methods with lowest reporting limit needed to meet TACO Sector Project Manager Am Janson Sample Matrix MOSTARDI PLATT ENVIRONMENTAL – CHAIN OF CUSTODY 8 2 wk. | Reporting: Dry Weight Relinquished by: 1. Collection Time Sample 20:47 | |-| |SO 19,0'F PROJECT INFORMATION rinted Name: 4/10/06 410 as 401017 Collection Date Company; Condition of Sample Containers: COMMENTS background concentrations and remediation objectives. 07:24 Ha 1520 Kensington Road, Suite 204, Oak Brook, Illinois 60523-2139 5 CM Received by: 1. から MPA Sample seals. Point ID Project Name: Soclawing of Wewer Printed Name: 48 hr. Krwk. Phone: 630-993-2100 Fax: 630-993-9017 Pershody Project Number: : MO6/40 Purchase Order Number: 9 20 2 Time: // 0 Sample Tempio Subcontracted Relinquished by Laboratory Sample ID Please rute 24 hr. Collector: アのコロウ Delivered Via: righted Name Signature: TAT

19 April 2006

1380 Busch Parkway Buffalo Grove, Illinois 60089

Lab ID: B604156

Phone: (847) 808-7766

Fax: (847) 808-7772

Kim Janson Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

RE: Sachnoff & Weaver Phase II

Enclosed are the results of analyses for samples received by the laboratory on 04/12/06. The sample results relate only to the tested analytes of interest and to the sample as received by the laboratory. At the time of analysis, the laboratory was in compliance with current NELAP standards and held accreditation for all analyses performed unless noted by a qualifier. The laboratory's Illinois NELAP accreditation number is 100261.

This report can not be reproduced, except in full, without written approval from the laboratory. If you have any questions concerning this report, please feel free to contact Jim Knapp or Margaret Kniest.

Sincerely,

TestAmerica Analytical Testing Corporation

Julie Meyer

Laboratory Director

Juni Muyn

James Knapp

Quality Assurance Manager

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604156 **Reported:** 04/19/06 17:41

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GP-4 (4-8)	B604156-01	Soil	04/11/06 09:50	04/12/06 15:30
GP-5 (4-6)	B604156-02	Soil	04/11/06 11:20	04/12/06 15:30
GP-5 (6-8)	B604156-03	Soil	04/11/06 11:22	04/12/06 15:30
GP-6 (4-6)	B604156-04	Soil	04/11/06 14:32	04/12/06 15:30
GP-6 (8-10)	B604156-05	Soil	04/11/06 14:39	04/12/06 15:30
GP-6 (14-16)	B604156-06	Soil	04/11/06 15:06	04/12/06 15:30
,	B604156-07	Water	04/11/06 00:00	04/12/06 15:30
Trip Blank	2001120	**		

Sample Receipt Notes

Please note that the chain of custody (COC) included with this report is considered part of the report. The data user should review any comments or notes made on the COC. Any receipt issues found by the laboratory that are not noted on the COC will be stated below.

All sample container custody seals are intact.

TestAmerica Analytical - Buffalo Grove

Approved by:

Margaret Must

Margaret Kniest, Extractionist

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604156 Reported: 04/19/06 17:41

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
GP-4 (4-8) (B604156-01) Soil	Sampled: 04/11/06 09:50	Receive	d: 04/12/0	6 15:30					
Acetone	23.7	21.1	ug/kg dry	ı	6040347	04/18/06	04/19/06	EPA 8260B	A, I
Benzene	ND	4.23		n	**	n	'n		
Bromodichloromethane	ND	4.23	"	"	**	"	**	**	
Bromoform	ND	4.23	ŧŧ	n	u	**	#1	u	
Bromomethane	ND	4.23	**	11	n	в	10	T ⁴	
2-Butanone	ND	8.46	"	, iii	H	u	1)	n	
Carbon disulfide	ND	4.23	**	11	1)	**	н	u	
Carbon tetrachloride	ND	4.23	n	it	†•	n	**	**	
Chlorobenzene	ND	4.23	11	н	IT	U	**	11	
Chlorodibromomethane	ND	4.23	**	**	0	Ħ	**	**	
Chloroethane	ND	4.23		"	**	*	D	**	
Chloroform	ND	4.23	11		**	D	"	II.	
Chloromethane	ND	4.23	+1	17	11	**	н	11	
1,1-Dichloroethane	ND	4.23	n	0	**	ŋ	· ·	**	
1.2-Dichloroethane	ND	4.23		a	,,	U	**	n	
1,1-Dichloroethene	ND	4.23	11	**	U	Ħ	•	•	
cis-1,2-Dichloroethene	ND	4.23	D	h	11	17	0	#1	
	ND	4.23	"	u	н	n	11	n	
trans-1,2-Dichloroethene	ND	4.23	**	**	11	11)7	n.	
1,2-Dichloropropane	ND	2.54	**	11	**	.,	••	**	
1,3-Dichloropropene (cis + trans)	ND ND	4.23			Ħ	11	**	**	
Ethylbenzene	ND	8.46		TÎ	n	11	H	24	
2-Hexanone		4.23		n	**	1)	**	Ħ	
Methylene chloride	ND	8.46		"	**	,,	**	17	
4-Methyl-2-pentanone	ND	4.23		**	**	51	**		
Methyl tert-butyl ether	ND	4.23			0	"		**	
Styrene	ND				**	н	71	D	
1,1,2,2-Tetrachloroethane	ND	4.23		**	11	**	,,		
Tetrachloroethene	ND	4.23		1+	v	,,	"	**	
Toluene	ND	4.23		11	11	u	**		
1,1,1-Trichloroethane	ND	4.23		\$1	n	,,		ņ	
1,1,2-Trichloroethane	ND	4.23		11	,,	,,	•	**	
Trichloroethene	ND	4.23	1	" n	"	0		,,	
Trichlorofluoromethane	ND	4.23	•		,,	,,)r		
Vinyl acetate	ND	8.46	•	'n	л 0	" D	" U	**	
Vinyl chloride	ND	4.23		" "	11	"	,,	n	
Total Xylenes	ND	8.46							
Surrogate: Dibromofluoromethan	e	100 %	5 55.9	9-150	'n	n	"	**	
Surrogate: 1,2-Dichloroethane-de	4	97.4 %	6 47.	5-150	"	ar .	. "	11	
Surrogate: Toluene-d8		100 %	55.	4-145	"	"	47		
Surrogate: 4-Bromofluorobenzen	ø	90.1 %		4-137	"	"	**	₩	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

& Reviewed :Approved by

Margaret Kniest, Extractionist

Page 2 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604156 Reported: 04/19/06 17:41

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
GP-5 (4-6) (B604156-02) Soil	Sampled: 04/11/06 11:20	Receive	d: 04/12/0	6 15:30					
Acetone	ND	24.7	ug/kg dry	1	6040347	04/18/06	04/19/06	EPA 8260B	
Benzene	ND	4.94	11	"	IT	Ħ	u.	n	
Bromodichloromethane	ND	4.94	b†	**	U	**	11	u-	
Bromoform	ND	4.94	н	**	11	by	**	•	
Bromomethane	ND	4.94	v	**	H	1)		n	
2-Butanone	ND	9.87	**	n	n	ti	11	H	
Carbon disulfide	ND	4.94	**	0	n	**	*1	ıt	
Carbon tetrachloride	ND	4.94	"	"	**	•	н	19	
Chlorobenzene	ND	4.94	"	11	11	v	**	н	
Chlorodibromomethane	ND	4.94	*1	U	0	н	**	"	
Chloroethane	ND	4.94	11	11	**	11	n	**	
Chloroform	ND	4.94	•	**	71	0	u	"	
Chloromethane	ND	4.94	**	11	15	**	**	*	
1,1-Dichloroethane	ND	4.94	**	h	0	Ħ	r	b†	
1,2-Dichloroethane	ND	4.94	10	**	**	P	D	**	
1,1-Dichloroethene	ND	4.94		11		**	U	**	
cis-1,2-Dichloroethene	228	4.94	**	it	"	14	**	**	
trans-1,2-Dichloroethene	ND	4.94	**	v	ŋ	н	12	e	
1,2-Dichloropropanc	ND	4.94	u.	**	11	v	n	n	
1,3-Dichloropropene (cis + trans)	ND	2.96	**	41	11	**	v	*	
Ethylbenzene	ND	4.94	**	"	w	n	**	•	
2-Hexanone	ND	9.87	H	"	0	D	n	v	
Methylene chloride	ND	4.94	n	"	11	U	· ·	11	
4-Methyl-2-pentanone	ND	9.87		*	n	н	**	r	
Methyl tert-butyl ether	ND	4.94	**	n	17	н	*		
Styrene	ND	4.94		u	u	D	17	v	
1.1.2,2-Tetrachloroethane	ND	4.94		++	**	*1	0	11	
Tetrachloroethene	ND	4.94		#	n	н	#	H	
Toluene	ND	4.94		"	•	ef	"	o	
1,1,1-Trichloroethane	ND	4.94		0		lt.		0	
1,1,2-Trichloroethane	ND	4.94		Ħ	11	71	u	**	
Trichlorofluoromethane	ND	4.94		n	**	'n	**		
	ND	9.87		"	n		n	"	
Vinyl acetate	ND ND	4.94		A	**	v	u	11	
Vinyl chloride	ND ND	9.87		12	**	n	14	"	
Total Xylenes		97.2 %		D-150	tr .	a	<i>o</i>	ø	
Surrogate: Dibromofluoromethan		96.0 %		5-150	,,	"	*	*	
Surrogate: 1,2-Dichloroethane-d	4	97.0 %		1-130 1-145	D	,,	P	,,	
Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzen	e	90.7 %		1-143 1-137		"		17	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604156

Reported: 04/19/06 17:41

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-5 (4-6) (B604156-02RE2) Soil	Sampled: 04/11/0	6 11:20 Re	ceived: 04/	/12/06 15:	30				
Trichloroethene	16800	2960	ug/kg đry	500	6040347	04/19/06	04/19/06	EPA 8260B	
Surrogate: Dibromofluoromethane		98.2 %	40.7-		"	"	,,	n 2	
Surrogate: 1,2-Dichloroethane-d4		105 %	44.3-		"	"	,,	0	
Surrogate: Toluene-d8		87.6 %	48.7-		rr	"	"	,,	
Surrogate: 4-Bromofluorobenzene		99.3 %	36.5	-147	12	и	,,		
GP-6 (4-6) (B604156-04RE1) Soil	Sampled: 04/11/0	6 14:32 Re	ceived: 04	/12/06 15:	:30				
Acctone	ND	22.9	ug/kg dry	ł	6040347	04/19/06	04/19/06	EPA 8260B	
Benzene	ND	4.59	***	**	11	U	"	п	
Bromodichloromethane	ND	4.59	н	**	9	**	***	n	
Bromoform	ND	4.59	11	0	н	Ħ	ti.	17	
Bromomethane	ND	4.59	**	**	н		11	Į1	
2-Butanone	ND	9.17	19	H		*	n	H	
Carbon disulfide	ND	4.59	u-	0	***	II .		0	
Carbon tetrachloride	ND	4.59	н	74	1)	11	Ħ	н	
Chlorobenzene	ND	4.59	**	**	11	н	13	11	
Chlorodibromomethane	ND	4.59	**	0	17	и	**	"	
Chloroethane	ND	4.59	**	+	U	**	н	**	
	ND	4.59		ŧ	**	ļī	· ·	o	
Chloroform	ND	4.59		**	t+	"	n	*1	
Chloromethane	ND	4.59		•		**	**	**	
1,1-Dichloroethane	ND	4.59		•	**	0	0	"	
1.2-Dichloroethane	ND ND	4.59		41	11	*1	71	11	
1.1-Dichloroethene	ND ND	4.59		H	a a	н	14	ь	
cis-1.2-Dichloroethene		4.59		**	**	a		n	
trans-1,2-Dichloroethene	ND	4.59		11	v	*	**	11	
1,2-Dichloropropane	ND			11	"	v	ь	,,	
1.3-Dichloropropene (cis + trans)	ND	2.75		o	77	0	**	a	
Ethylbenzene	ND	4.59	•	**		**	H	н	
2-Hexanone	ND	9.17		н	**	n	0		
Methylene chloride	ND	4.59	,	н	,,	*1	*	**	
4-Methyl-2-pentanone	ND	9.17		м		н	p	n	
Methyl tert-butyl ether	ND	4.59	,	,,	**		,,	11	
Styrene	ND	4.59				11	,,	"	
1,1,2,2-Tetrachloroethane	ND	4.59						**	
Tetrachloroethene	ND	4.59		,,	"	"	,,	n	
Toluene	ND	4.59		87	**		"	11	
1.1.1-Trichloroethane	ND	4.59		**	v	**		**	
1,1,2-Trichloroethane	ND	4.59		*	**	11	,	*	
Trichloroethene	ND	4.59			H	**	0		
Trichlorofluoromethane	ND	4.59	"	יו	"	Ħ	и	н	
Vinyl acetate	ND	9.1	7 "	n	**	U	D	H	
Vinyl acctate Vinyl chloride	ND	4.59) "	**	**	**	0	U	
vinyi cinoriae									

TestAmerica Analytical - Buffalo Grove

Reviewed & Margaret Louis

Margaret Kniest, Extractionist

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604156 **Reported:** 04/19/06 17:41

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	teporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
GP-6 (4-6) (B604156-04RE1) Soi	l Sampled: 04/11/06 1-	1:32 Re	ceived: 04	/12/06 15:	30				
Total Xylenes	ND	9.17	ug/kg dry	1	6040347	04/19/06	04/19/06	EPA 8260B	
Surrogate: Dibromofluoromethane		104 %	55.9	-150	H	**	"	"	
Surrogate: 1,2-Dichloroethane-d4		95.4 %	47.5-	150	#	**	**	P	
Surrogate: Toluene-d8		102 %	55.4	-145	**	17		"	
Surrogate: 4-Bromofluorobenzene		92.6 %	40.4	.137	,,	"	"	"	
Trip Blank (B604156-07) Water	Sampled: 04/11/06 00:0	D Recei	ved: 04/12	/06 15:30					
Acetone	ND	10.0	ug/l	1	6040307	04/17/06	04/18/06	EPA 8260B	
Benzene	ND	2.00	"	71	U	n	Ħ	n	
Bromodichloromethane	ND	2.00	H	h	***		**	41	
Bromoform	ND	1.00	**	n	11		**	79	
Bromomethane	ND	2.00	v	11	11	9	н	31	
2-Butanone	ND	10.0	10		н	"	B	FT	
Carbon disulfide	ND	2.00		19	n	**	F1	P	
Carbon tetrachloride	ND	2.00	**	"	n	*1	n	· ·	
Chlorobenzene	ND	2.00	Ħ	"	0	1*	v	n .	
Chlorodibromomethane	ND	2.00	11	Ħ	NF.	**	18	u	
Chloroethane	ND	2.00	ht	**	0	**	**	11	
Chloroform	ND	2.00	**	rt			**	**	
Chloromethane	ND	2.00	n	n	**	.,	11	17	
1.1-Dichloroethane	ND	2.00	"			0	n	17	
1.2-Dichloroethane	ND	2.00	19	u	н	,,	n	19	
1.1-Dichloroethene	ND	2.00	11		n	**		U	
cis-1.2-Dichloroethene	ND	2.00	0	**		**	•		
112 111	ND	2.00	11	**	14	**	n	0	
trans-1,2-Dichloroethene	ND	2.00	н	**	D	**	**	41	
1.2-Dichloropropane	ND	2.00	**	**		n	**	u	
1.3-Dichloropropene (cis + trans)	ND ND	2.00	,,	**			*	"	
Ethylbenzene	ND ND	10.0	ır.	11		n	n	17	
2-Hexanone		2.00	m	11	**	o	n	n	
Methylene chloride	ND	10.0		w	**	**	D	11	
4-Methyl-2-pentanone	ND	2.00	v		**	**		U	
Methyl tert-butyl ether	ND		11	**	**	**	**	v	
Styrene	ND	2.00	+1		11		11	**	
1,1,2,2-Tetrachloroethane	ND	2.00	*1	**	19)	Ħ	**	
Tetrachloroethene	ND	2.00	,,	**			**	**	
Toluene	ND	2.00	н	17			,,	**	
1.1.1-Trichloroethane	ND	2.00		+1		,,	. "	rt	
1.1.2-Trichloroethane	ND	2.00).):	,,		" D	"	
Trichloroethene	ND	2.00) ,	"	**	"	,,	
Trichlorofluoromethane	ND	2.00							
Vinyl acetate	ND	2.00		**	"	1*	n		
Vinyl chloride	ND	2.00	n	v	*	ч	u	v	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Page 5 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604156 **Reported:** 04/19/06 17:41

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Trip Blank (B604156-07) Water	Sampled: 04/11/06 00:00	Receiv	ed: 04/12/	06 15:30					
Total Xylenes	ND	4.00	ug/l	1	6040307	04/17/06	04/18/06	EPA 8260B	
Surrogate: Dibromofluoromethane		89.4 %	69.8-	133	**	**	n	"	
Surrogate: 1,2-Dichloroethane-d4		91.4%	61.2-	141	**	"	"	"	
Surrogate: Toluene-d8		100 %	75.8-	118	"	"		н	
Surrogate: 4-Bromofluorobenzene		93.4 %	68.9-	123	n	15	"	н	

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by:

Margaret Kniest, Extractionist

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604156 Reported: 04/19/06 17:41

Percent Solids

TestAmerica Analytical - Buffalo Grove

Analyte	Result	leporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
GP-4 (4-8) (B604156-01) Soil	Sampled: 04/11/06 09:50	Receive	1: 04/12	/06 15:30					
% Solids	90.0	0.200	%	1	6040245	04/13/06	04/13/06	EPA 5035 7.5	
GP-5 (4-6) (B604156-02) Soil	Sampled: 04/11/06 11:20	Receive	d: 04/12	/06 15:30					
% Solids	84.4	0.200	%	1	6040245	04/13/06	04/13/06	EPA 5035 7.5	
GP-6 (4-6) (B604156-04) Soil	Sampled: 04/11/06 14:32	Receive	d: 04/12	/06 15:30					
% Solids	84.5	0.200	%	ì	6040245	04/13/06	04/13/06	EPA 5035 7.5	

TestAmerica Analytical - Buffalo Grove

Reviewed & Market No.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Analyte

Project: Sachnoff & Weaver Phase II

Spike

Level

Source

Result

%REC

Project Number: M061401 Project Manager: Kim Janson

Reporting

Limit

Result

ND

ND

ND

ND

ND

ND

ND ND

ND

ND

ND

ND

ND

2.00

10.0 2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

Lab ID: B604156 Reported: 04/19/06 17:41

RPD

Limit

Notes

RPD

%REC

Limits

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Units

Blank (6040307-BLK1)				Prepared: 04/17/06 Analyzed: 04/18/06
Acetone	ND	10.0	սց/1	
Benzene	ND	2.00	17	
3romodichloromethane	ND	2.00	"	
romoform	ND	1.00	11	
romomethane	ND	2.00	Ħ	
-Butanone	ND	10.0	17	
Carbon disulfide	ND	2.00	B	
Carbon tetrachloride	ND	2.00	**	
hlorobenzene	ND	2.00	ţŧ	
Chlorodibromomethane	ND	2.00	11	
hloroethane	ND	2.00	В	
hloroform	ND	2.00	D	
Chloromethane	ND	2.00	0	
, I-Dichloroethane	ND	2.00	**	
,2-Dichloroethane	ND	2.00	**	
,1-Dichloroethene	ND	2.00	В	
is-1,2-Dichloroethene	ND	2.00	n	
ans-1,2-Dichloroethene	ND	2.00	U	
2-Dichloropropane	ND	2.00	**	
3-Dichloropropene (cis + trans)	ND	2.00	н	
hylbenzene	ND	2.00	H	
Hexanone	ND	10.0	"	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Approved by:

Styrene

Toluene

Methylene chloride 4-Methyl-2-pentanone

Methyl tert-butyl ether

Tetrachloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl acetate

Vinyl chloride

1,1,2,2-Tetrachloroethane

Margaret Kniest, Extractionist

Page 8 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project Number: M061401 Project Manager: Kim Janson Lab ID: B604156 Reported: 04/19/06 17:41

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040307 - EPA 5030B (P/T)										
Blank (6040307-BLK1)				Prepared:	04/17/06	Analyzec	1: 04/18/06			
Total Xylenes	ND	4.00	ug/l	the state of the s						
Surrogate: Dibromofluoromethane	44,4		11	50.0		88.8	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	44.8		,,	50.0		89.6	61.2-141			
Surrogate: Toluene-d8	50.0		P	50.0		100	75.8-118			
Surrogate: 4-Bromofluorobenzene	47,4		n	50.0		94.8	68.9-123			
LCS (6040307-BS1)				Prepared:	04/17/06	Analyzeo	1: 04/18/06			
Acetone	77.6	10.0	ug/l	100		77.6	10-150			
Benzene	51.1	2.00	*	50.0		102	66-127			
Bromodichloromethane	54,4	2.00	11	50.0		109	70.2-136			
Bromoform	46.6	1.00	**	50.0		93.2	44.6-150			
Bromomethane	51.6	2.00	11	50.0		103	10-150			
2-Butanone	94.9	10.0	11	100		94.9	10-150			
Carbon disulfide	88.7	2.00	н	100		88.7	10-150			
Carbon tetrachloride	48.6	2.00	**	50.0		97.2	56.1-137			
Chlorobenzene	52.4	2.00	*	50.0		105	75.3-123			
Chlorodibromomethane	53.3	2.00	*	50.0		107	66.5-140			
Chloroethane	53.8	2.00	**	50.0		108	30.4-150			
Chloroform	48.5	2.00	H	50.0		97.0	64.5-135			
Chloromethane	47.7	2.00	*	50.0		95.4	22-150			
1,1-Dichloroethane	47.4	2.00	н	50.0		94.8	57.6-140			
1,2-Dichloroethane	50.0	2.00	n	50.0		100	62-142			
1,1-Dichloroethene	44.4	2.00	**	50.0		88.8	49.4-128			
cis-1,2-Dichloroethene	50.1	2.00	n	50.0		100	69.2-134			
trans-1,2-Dichloroethene	46.7	2.00	eŧ	50.0		93.4	57.6-135			
1,2-Dichloropropane	49.4	2.00	н	50.0		98.8	67.5-132			
1,3-Dichloropropene (cis + trans)	99.7	2.00	•	100		99.7	66.2-137			
Ethylbenzene	51.4	2.00	н	50.0		103	69.5-129			
2-Hexanone	89.0	10.0	51	001		89.0	10-150			
Methylene chloride	46.1	2.00	n	50.0		92.2	43.2-150			
4-Methyl-2-pentanone	93.3	10.0	и	100		93.3	27.2-150			
Methyl tert-butyl ether	44.7	2.00	,,	50.0		89.4	66.8-141			
Styrene	51.9	2.00	н	50.0		104	65.6-134			
1.1,2,2-Tetrachloroethane	46.5	2.00	ht	50.0		93.0	56-146			
Tetrachloroethene	53.5	2.00	79	50.0		107	61.9-133			

2.00

50.0

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

70.5-123

99.6

Reviewed & Approved by:

Toluene

Margaret Kniest, Extractionist

Page 9 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604156 **Reported:** 04/19/06 17:41

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040307 - EPA 5030B (P/T)					***************************************					
LCS (6040307-BS1)				Prepared:	04/17/06	Analyzed	: 04/18/06		handagabhanni dala Mari dibi Persentanyan	
1,1,1-Trichloroethane	48.8	2.00	ug/l	50.0		97.6	60.1-137			
1,1,2-Trichloroethane	52.1	2.00	H	50.0		104	77-132			
Trichloroethene	53.5	2.00	n	50.0		107	65.3-132			
Trichlorofluoromethane	41.6	2.00	11	50.0		83.2	47.2-150			
Vinyl acetate	87.0	2.00	4	100		87.0	10-150			
Vinyl chloride	45.2	2.00	11	50.0		90.4	39.1-150			
Total Xylenes	154	4.00	.11	150		103	64.4-131			
Surrogate: Dibromofluoromethane	42.7		.,	50.0		85.4	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	47.4		"	50.0		94.8	61.2-141			
Surrogate: Toluene-d8	50.0		"	50.0		100	75.8-118			
Surrogate: 4-Bromofluorobenzene	52.3		"	50.0		105	68.9-123			
Matrix Spike (6040307-MS1)	Sot	rce: B60415	57-01RE1	Prepared	: 04/17/06	Analyzed	1: 04/18/06		***************************************	
Acetone	88.4	0.01	ug/l	100	ND	88.4	10-150			
Benzene	50.5	2.00	0	50.0	ND	101	54.8-135			
Bromodichloromethane	54.3	2.00	н	50.0	ND	109	63-141			
Bromoform	49.9	1.00	D	50.0	ND	99.8	39.2-150			
Bromomethane	44.3	2.00	11	50.0	ND	88.6	10-150			
2-Butanone	109	0.01	н	100	ND	109	10-150			
Carbon disulfide	90.6	2.00	**	100	ND	90.6	10-150			
Carbon tetrachloride	48.1	2.00	v	50.0	ND	96.2	50.4-138			
Chlorobenzene	52.9	2.00	**	50.0	ND	106	69.5-127			
Chlorodibromomethane	55.2	2.00	*1	50.0	ND	110	61.9-141			
Chloroethane	37.1	2.00	••	50.0	ND	74.2	18.3-150			
Chloroform	48.5	2.00	0	50.0	ND	97.0	54.1-142			
Chloromethane	48.9	2.00		50.0	ND	97.8	19.1-150			
1,1-Dichloroethane	47.1	2.00	H	50.0	ND	94.2	51.9-141			
1,2-Dichloroethane	51.4	2.00	D	50.0	ND	103	55.5-147			
1.1-Dichloroethene	44.8	2.00	0	50.0	ND	89.6	36.2-135			
cis-1,2-Dichloroethene	49.7	2.00	**	50.0	ND	99.4	53.1-146			
trans-1,2-Dichloroethene	47.5	2.00	n	50.0	ND	95.0	53.7-131			
1,2-Dichloropropane	48.6	2.00	v	50.0	ND	97.2	60.6-1,37			
1.3-Dichloropropene (cis + trans)	99.9	2.00	**	100	ND	99.9	16.7-150			
Ethylbenzene	51.0	2.00	**	50.0	ND	102	62.8-133			
2-Hexanone	97.2	10.0	19	100	ND	97.2	11.6-148			
Methylene chloride	46.7	2.00	"	50.0	ND	93.4	33.8-150			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Page 10 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Spike

Source

Project Number: M061401 Project Manager: Kim Janson

Reporting

Lab ID: B604156 **Reported:** 04/19/06 17:41

RPD

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6040307 - EPA 5030B (P/T)										
Matrix Spike (6040307-MS1)	Sou	ırce: B60415	7-01RE1	Prepared:	04/17/06	Analyzed:	04/18/06			***************************************
-Methyl-2-pentanone	98.8	10.0	ug/l	100	ND	98.8	12.1-150			
Methyl tert-butyl ether	46.7	2.00	U	50.0	ND	93.4	52.6-150			
Styrene	48.5	2.00	**	50.0	ND	97.0	48.8-144			
,1,2,2-Tetrachloroethane	51.8	2.00	**	50.0	ND	104	56.8-150			
l'etrachloroethene	69.5	2.00		50.0	19.4	100	50.8-136			
Coluene	49.5	2.00	•	50.0	ND	99.0	57.9-131			
,1,1-Trichloroethane	47.8	2.00	er er	50.0	ND	95.6	53.3-137			
,1,2-Trichloroethane	53.5	2.00	**	50.0	ND	107	63.7-140			
Trichloroethene	51.1	2.00	0	50.0	0.730	101	47.2-131			
Frichlorofluoromethane	44.3	2.00	"	50.0	ND	88.6	10.8-150			
Vinyl acetate	100	2.00	11	100	ND	100	10-150			
Vinyl chloride	45.1	2.00	n	50.0	ND	90.2	13-150			
Fotal Xylenes	152	4.00		150	ND	101	45.9-146			
Surrogate: Dibromofluoromethane	44.1		**	50.0		88.2	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	48.4		"	50.0		96.8	61.2-141			
Surrogate: Toluene-d8	49.6		**	50.0		99.2	75.8-118			
Surrogate: 4-Bromofluorobenzene	53.0		н	50.0		106	68.9-123			
Matrix Spike Dup (6040307-MSD1)	So	urce: B60415	7-01REI	Prepared	: 04/17/06	Analyzed	: 04/18/06			
Acetone	82.0	10.0	n84	100	ND	82.0	10-150	7.51	40	
Benzene	49.5	2.00	•	50.0	ND	99.0	54.8-135	2.00	31.9	
Bromodichloromethane	52.4	2.00	•	50.0	ND	105	63-141	3.56	28.2	
Bromoform	48.0	1.00	н	50.0	ND	96.0	39.2-150	3.88	29.3	
Bromomethane	47.3	2.00	**	50.0	ND	94.6	10-150	6.55	40	
2-Butanone	103	10.0	H	100	ND	103	10-150	5.66	40	
Carbon disulfide	88.9	2.00	v	100	ND	88.9	10-150	1.89	40	
Carbon tetrachloride	46.9	2.00		50.0	ND	93.8	50.4-138	2.53	35.1	
Chlorobenzene	51.2	2.00	†t	50.0	ND	102	69.5-127	3.27	38.4	
Chlorodibromomethane	54.0	2.00	•	50.0	ND	108	61.9-141	2.20	29.3	
Chloroethane	37.3	2.00	n	50.0	ND	74.6	18.3-150	0.538	40	
Chloroform	47.7	2.00		50.0	ND	95.4	54.1-142	1.66	29.1	
	47.8	2.00	"	50.0	ND	95.6	19.1-1,50	2.28	40	
Chloromethane	-77.00							2.17		
	45.5	2.00	**	50.0	ND	91.0	51.9-141	3.46	27.6	
1.1-Dichloroethane		2.00 2.00	**	50.0 50.0	ND ND	91.0 100	51.9-141 55.5-147	2.76	27.6 25.2	
Chloromethane 1.1-Dichloroethane 1.2-Dichloroethane 1.1-Dichloroethene	45.5									

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Page 11 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

Spike

Source

%REC

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604156

RPD

Reported: 04/19/06 17:41

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6040307 - EPA 5030B (P/T)	-				······································					
Matrix Spike Dup (6040307-MSDI)	Sou	rce: B60415	7-01RE1	Prepared:	04/17/06	Analyzed	1: 04/18/06			
trans-1,2-Dichloroethene	45.7	2.00	ug/l	50.0	ND	91.4	53.7-131	3.86	32	
1,2-Dichloropropane	48.0	2.00		50.0	ND	96.0	60.6-137	1.24	26.8	
1,3-Dichloropropene (cis + trans)	97.9	2.00	0	100	ND	97.9	16.7-150	2.02	40	
Ethylbenzene	49.8	2.00		50.0	ND	99.6	62.8-133	2.38	40	
2-Hexanone	93.3	10.0	"	100	ND	93.3	11.6-148	4.09	40	
Methylene chloride	44.8	2.00	**	50.0	ND	89.6	33.8-150	4.15	36.8	
4-Methyl-2-pentanone	94.9	10.0	**	100	ND	94.9	12.1-150	4.03	40	
Methyl tert-butyl ether	44.7	2.00	**	50.0	ND	89.4	52.6-150	4.38	40	
Styrene	47.8	2.00	**	50.0	ND	95.6	48.8-144	1.45	40	
1,1,2,2-Tetrachloroethane	49.3	2.00	n	50.0	ND	98.6	56.8-150	4.95	25	
Tetrachloroethene	68.4	2.00	n	50.0	19.4	98.0	50.8-136	1.60	40	
Toluene	48.0	2.00	**	50.0	ND	96.0	57.9-131	3.08	38.7	
1,1.1-Trichloroethane	47.1	2.00	"	50.0	ND	94.2	53.3-137	1.48	38.2	
1,1,2-Trichloroethane	51.6	2.00	"	50.0	ND	103	63.7-140	3.62	27.4	
Trichloroethene	50.4	2.00	n	50.0	0.730	99.3	47.2-131	1.38	40	
Trichlorofluoromethane	41.4	2.00	"	50.0	ND	82.8	10.8-150	6.77	40	
Vinyl acetate	93.9	2.00	"	100	ND	93.9	10-150	6.29	40	
Vinyl chloride	44.2	2.00		50.0	ND	88.4	13-150	2.02	40	
Total Xylenes	148	4.00	11	150	ND	98.7	45.9-146	2.67	40	
Surrogate: Dibromofluoromethane	45.2	······································	"	50.0		90.4	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	48.3		"	50.0		96.6	61.2-141			
Surrogate: Tolucne-d8	49.5		"	50.0		99.0	75.8-118			
Surrogate: 4-Bromofluorobenzene	52.7		"	50.0		105	68.9-123			

Blank (6040347-BLK1)				Prepared & Analyzed: 04/18/06
Acetone	ND	25.0	ug/kg wet	
Benzene	ND	5.00	11	
Bromodichloromethane	ND	5.00	H	
Bromoform	ND	5.00	P	
Bromomethane	ND	5.00	11	
2-Butanone	ND	10.0	•	
Carbon disultide	ND	5.00	**	
Carbon tetrachloride	ND	5.00	n	
Chlorobenzene	ND	5.00		

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Approved by:

Margaret Kniest, Extractionist

Page 12 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604156

Reported: 04/19/06 17:41

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

		Reporting		Spike	Source	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Limit	Units	Level	Result	70KEC	t'iiiii	1/3 1/2		
Batch 6040347 - EPA 5035B [P/T]								<u></u>		
Blank (6040347-BLK1)		***************************************		Prepared	& Analyz	ed: 04/18/0	06			
Chlorodibromomethane	ND	5.00	ug/kg wet							
Chloroethane	ND	5.00	**							
Chloroform	ND	5.00	w							
Chloromethane	ND	5.00	11							
1,1-Dichloroethane	ND	5.00	**							
1,2-Dichloroethane	ND	5.00	U							
1,1-Dichloroethene	ND	5.00	**							
cis-1,2-Dichloroethene	ND	5.00	**							
trans-1,2-Dichloroethene	ND	5.00	"							
1,2-Dichloropropane	ND	5.00	11							
1,3-Dichloropropene (cis + trans)	ND	3.00	71							
Ethylbenzene	ND	5.00								
2-Hexanone	ND	10.0	11							
Methylene chloride	ND	5.00	Ť4							
4-Methyl-2-pentanone	ND	10.0								
Methyl tert-butyl ether	ND	5.00	H							
Styrene	ND	5.00	· · ·							
1,1,2,2-Tetrachloroethane	ND	5.00								
Tetrachloroethene	ND	5.00	H H							
Toluene	ND	5.00	* **							
1,1,1-Trichloroethane	ND	5.00	"							
1,1,2-Trichloroethane	ND	5.00) "							
Trichloroethene	ND	5.00) "							
Trichlorofluoromethane	ND	5.00	"							
Vinyl acetate	ND	10.0	"							
Vinyl chloride	ND	5.00) "							
Total Xylenes	ND	10.0	"			and the same of th				
Surrogate: Dibromofluoromethane	49.5	***************************************	,,	50.0		99.0	55.9-15			
Surrogate: 1,2-Dichloroethane-d4	48.5		17	50.0		97.0	47.5-15			
Surrogate: Toluene-d8	50.7		,,	50.0		101	55.4-14			
Surrogate: 4-Bromofluorobenzene	47.5		ņ	50.0		95.0	40.4-13	7		

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by:

Margaret Knied

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson

Lab ID: B604156 Reported: 04/19/06 17:41

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040347 - EPA 5035B [P/T]										
LCS (6040347-BS1)				Prepared:	04/18/06	Analyzed	1: 04/19/06			
Acetone	129	25.0	ug/kg wet	100		129	10-150			
Benzene	47.3	5.00	н	50.0		94.6	54.8-130			
Bromodichloromethane	50.5	5.00	n	50.0		101	55.7-137			
Bromoform	48.3	5.00	u	50.0		96.6	48.6-150			
Bromomethane	49.1	5.00	*1	50.0		98.2	10-150			
2-Butanone	123	10.0	bţ	100		123	10-150			
Carbon disulfide	96.5	5.00	0	100		96.5	10-150			
Carbon tetrachloride	44.5	5.00	11	50.0		89.0	43,4-141			
Chlorobenzene	46.5	5.00	11	50.0		93.0	56.2-127			
Chlorodibromomethane	49.7	5.00	u	50.0		99.4	54.1-142			
Chloroethane	55.4	5.00	н	50.0		111	10-150			
Chloroform	49.0	5.00	н	50.0		98.0	53.7-135			
Chloromethane	51.5	5.00	n	50.0		103	12.4-150			
1.1-Dichloroethane	48.0	5.00	н	50.0		96.0	47.4-139			
1.2-Dichloroethane	49.1	5.00	H	50.0		98.2	54.6-140			
1.1-Dichloroethene	48.6	5.00	n	50.0		97.2	35.5-135			
cis-1.2-Dichloroethene	48.4	5.00	#1	50.0		96.8	52.5-136			
trans-1,2-Dichloroethene	48.3	5.00	17	50.0		96.6	47.8-133			
1,2-Dichloropropane	45.5	5.00	o	50.0		91.0	68.3-124			
1,3-Dichloropropene (cis + trans)	96.2	3.00	**	100		96.2	60.9-140			
Ethylbenzene	45.8	5.00	n	50.0		91.6	50.7-127			
2-Hexanone	132	10.0	n	100		132	10-150			
Methylene chloride	50.2	5.00	tı	50.0		100	25.4-150			
4-Methyl-2-pentanone	131	10.0	н	100		131	10-150			
Methyl tert-butyl ether	49.9	5.00	, u	50.0		99.8	47.3-150			
Styrene	45.6	5.00	**	50.0		91.2	48.3-127			
1.1.2.2-Tetrachloroethane	55.3	5.00		50.0		111	30.4-150			
Tetrachloroethene	45.5	5.00		50.0		91.0	46.7-131			
Toluene	46.3	5.00	11	50.0		92.6	53.6-127			
1.1.1-Trichloroethane	48.1	5.00	۳ ا	50.0		96.2	49.3-136			
1.1.2-Trichloroethane	53.5	5.00	, "	50.0		107	57.2-146			
Trichloroethene	45.7	5.00) "	50.0		91.4	55-128			
Trichlorofluoromethane	44.8	5.00) "	50.0		89.6	10-150			
Vinyl acetate	84.8	10.0) "	100		84.8	10-150			
· stry : moonate										

TestAmerica Analytical - Buffalo Grove

Vinyl chloride

Approved by:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

94.6

28.4-150

Margaret Kniest, Extractionist

47.3

5.00

50.0

Page 14 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604156

Reported: 04/19/06 17:41

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	iccan									
Batch 6040347 - EPA 5035B [P/T]							0.110/06			
CS (6040347-BS1)					04/18/06	Analyzed	43.1-136			
Total Xylenes	134	10.0	ug/kg wet	150		89.3				
Surrogate: Dibromofluoromethane	53.1		••	50.0		106	55.9-150			
Surrogate: 1,2-Dichloroethane-d4	53.4		n	50.0		107	47.5-150			
Surrogate: Toluene-d8	31.4		**	50.0		103	55.4-145 40.4-137			
Surrogate: 4-Bromofluarobenzene	53.5		**	50.0		107	40.4-137			
_				Prepared:	04/18/06	Analyzeo	1: 04/19/06			
LCS Dup (6040347-BSD1)	127	25.0	ug/kg wet	100		127	10-150	1.56	35	
Acetone	49.2	5.00	"	50.0		98.4	54.8-130	3.94	35	
Benzene	52.0	5.00	u	50.0		104	55.7-137	2.93	31.6	
Bromodichloromethane	50.4	5.00	n	50.0		101	48.6-150	4.26	35	
Bromoform	49.1	5.00	н	50.0		98.2	10-150	0.00	35	
Bromomethane	132	10.0	51	100		132	10-150	7.06	35	
2-Butanone	98.2	5.00	**	100		98.2	10-150	1.75	35	
Carbon disulfide	46.3	5.00		50.0		92.6	43,4-141	3.96	35	
Carbon tetrachloride		5.00		50.0		97.4	56.2-127	4.62	35	
Chlorobenzene	48.7	5.00		50.0		103	54.1-142	3.75	34	
Chlorodibromomethane	51.6			50.0		113	10-150	1.97	35	
Chloroethane	56.5	5.00		50.0		101	53.7-135	2.82	32.2	
Chloroform	50.4	5.00	,	50.0		102	12.4-150	0.584	35	
Chloromethane	51.2	5.00	'			97.6	47.4-139	1.65	35	
1,1-Dichloroethane	48.8	5.00	,	50.0		100	54.6-140	1.82	31.5	
1,2-Dichloroethane	50.0	5.00		50.0		97.2	35.5-135	0.00	35	
1,1-Dichloroethene	48.6	5.00		50.0			52.5-136	4.05	32.9	
cis-1,2-Dichloroethene	50.4	5.00		50.0		101		4.26	35	
trans-1,2-Dichloroethene	50.4	5.00		50.0		101	47.8-133	4.30	33 27.4	
1.2-Dichloropropane	47.5	5.0		50.0		95.0	68.3-124		35	
1,3-Dichloropropene (cis + trans)	98.6	3.0	0 "	100		98.6	60.9-140	2.46		
Ethylbenzene	48.2	5.0	0 "	50.0		96.4	50.7-127	5.11	35	
2-Hexanone	136	10.	0 "	100		136	10-150	2.99	35	
Methylene chloride	51.1	5.0	0 "	50.0		102	25.4-150	1.78	35	
4-Methyl-2-pentanone	134	10.	0 "	100		134	10-150	2.26	35	
Methyl tert-butyl ether	50.7	5.0	0 "	50.0		101	47.3-150	1.59	35	
•	47.0	5.0	0 "	50.0		94.0	48.3-127	3.02	35	
Styrene	56.0	5.0	0 "	50.0		112	30.4-150	1.26	35	
1.1.2,2-Tetrachloroethane	49.1	5.6		50.0		98.2	46.7-131	7.61	35	
Tetrachloroethene	48.5	5.0		50.0		97.0	53.6-127	4.64	35	

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by:

Margaret Knied

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604156

Reported: 04/19/06 17:41

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	Limit	Notes
Batch 6040347 - EPA 5035B [P/T]				····					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
LCS Dup (6040347-BSD1)				Prepared:	04/18/06	Analyzed	1: 04/19/06			
1,1,1-Trichloroethane	49.0	5.00	ug/kg wet	50.0		98.0	49.3-136	1.85	35	
1,1,2-Trichloroethane	54.2	5.00	**	50.0		108	57.2-146	1.30	30.2	
Trichloroethene	48.0	5.00	P	50.0		96.0	55-128	4.91	35	
Trichlorofluoromethane	46.9	5.00	"	50.0		93.8	10-150	4.58	35	
Vinyl acetate	68.7	10.0	н	100		68.7	10-150	21.0	35	
Vinyl chloride	47.8	5.00	II.	50.0		95.6	28.4-150	1.05	35	
Total Xylenes	143	10.0	**	150		95.3	43.1-136	6.50	35	
Surrogate: Dibromofluoromethane	52.5		ð	50.0		105	55.9-150			
Surrogate: 1,2-Dichloroethane-d4	52.0		**	50.0		104	47.5-150			
Surrogate: Toluene-d8	51.3		ø	50.0		103	55.4-145			
Surrogate: 4-Bromofluorobenzene	53.4		**	50.0		107	40.4-137			

TestAmerica Analytical - Buffalo Grove

Reviewed & Margaret Knied Approved by:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604156

Reported: 04/19/06 17:41

Percent Solids - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040245 - General Prep									<u> </u>	······································
Blank (6040245-BLK1)				Prepared	& Analyz	ed: 04/13/	06			
% Solids	ND	0.200	%							
(CO (OO (F DI 1/3))				Prepared	& Analyz	ed: 04/13/	06			
Blank (6040245-BLK2) % Solids	ND	0.200	9/0							
AND AND ATT INSTITUTE	Som	rce: B60415	51-01	Prepared	& Analyz	ed: 04/13/	06			
Duplicate (6040245-DUP1) % Solids	96.5	0.200	9/6		97.2			0.723	20	
Duplicate (6040245-DUP2)	Sou 88.3	rce: B60415	51-02 %	Prepared	& Analyz 89.8	zed: 04/13/	06	1.68	20	
% Solids	99.3	0.200	. 2							

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by:

« Margaret Knied

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson

Lab ID: B604156 Reported: 04/19/06 17:41

Notes and Definitions

The method blank associated with this sample contains 17.83 ug/kg of this analyte. В

The concentration of the analyte detected in the sample is characteristic of a laboratory artifact.

Analyte DETECTED DET

Analyte NOT DETECTED at or above the reporting limit ND

Not Reported NR

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

This quality control measurement is below the laboratory established limit. L

This quality control measurement is above the laboratory established limit. Н

The laboratory is not NELAP accredited for this analyte by the indicated matrix and method.

The State of Illinois Accrediting Authority does not offer NELAP accreditation for this analyte by the indicated matrix and method.

Note: All analytes, by matrix and method, are accredited following current NELAP standards unless specifically noted by way of a qualifier listed above.

TestAmerica--Buffalo Grove, IL Wisconsin DNR Certification Lab ID: 999917160

TestAmerica--Buffalo Grove, IL NELAP Primary Accreditation: Illinois #100261

TestAmerica--Buffalo Grove, IL NELAP Secondary Accreditation: New Jersey #IL001

TestAmerica--Nashville, TN NELAP Secondary Accreditation: Illinois #200010

TestAmerica--Dayton, OH NELAP Secondary Accreditation: Illinois #200008

TestAmerica--Watertown, WI_NELAP Primary Accreditation: Illinois #100453

TestAmerica--Watertown, WI Wisconsin DNR Certification Lab ID: 128053530

TestAmerica Analytical - Buffalo Grove

2000 Receivedpy: (lab) ANALYSIS 78-4765 MT2A Yd Organic Carbon Content unted Metals 6010B/7000A PRESERVATIVE *Justullof yinoing latoT REQUESTED SAMPLE Y000L/80109 Total RCRA Metals * Relinquished by: 2. 9)[Pesticides by 8081A **bCB₂ pλ 808**5 2AOC² Py 8270C Signature: Company AOC? PA 2032/8500B Date 91£8 kd 2AN9 0 BLEX by 5035/8260B Time: Received by: 2. BLEX Py 5035/8021 # Wet Weight 16.00 J Containers Number of and Size Signature: Janon * Run metal analyses using methods with lowest reporting limit needed to meet TACO Sample Matrix 0 (3:55) MOSTARDI PLATT ENVIRONMENTAL – CHAIN OF CUSTODY Relinquished by: 1. Abry Weight 11 00 H Ž Collection Sample 9:50 Time R Project Manager: Cioned Name PROJECT INFORMATION 8 = 7 Sample Collection Reporting: Conditión of Sample Containers: Date COMMENTS us today background concentrations and remediation objectives. 9)-41 1520 Kensington Road, Suite 204, Oak Brook, Illinois 60523-2139 Phone: 630-993-2100 Fax: 630-993-9017 \mathbf{C} 0 Received by: 1. 2 wk. MPA Sample Point ID G Monst + Weaver アプラ 919 48 hr. 24 wk. Project Number: 1006 14/0, Project Name: Sach Mill Purchase Order Number B हो 1 sas sast 041510-01 Relinquished by Subcontracted Laboratory Sample ID Collector: 353 24 hr. Samble Temp: Delivered Via: Company: Printed Parin Signature: ىڭ

Phone: (847) 808-7766 Fax: (847) 808-7772

20 April 2006

Lab ID: B604175

Kim Janson Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

RE: Sachnoff & Weaver Phase II

Enclosed are the results of analyses for samples received by the laboratory on 04/13/06. The sample results relate only to the tested analytes of interest and to the sample as received by the laboratory. At the time of analysis, the laboratory was in compliance with current NELAP standards and held accreditation for all analyses performed unless noted by a qualifier. The laboratory's Illinois NELAP accreditation number is 100261.

This report can not be reproduced, except in full, without written approval from the laboratory. If you have any questions concerning this report, please feel free to contact Jim Knapp or Margaret Kniest.

Sincerely,

TestAmerica Analytical Testing Corporation

Julie Meyer

Laboratory Director

James Knapp

Quality Assurance Manager

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604175 **Reported:** 04/20/06 17:52

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
	B604175-01	Water	04/12/06 00:00	04/13/06 12:00
Trip Blank	B604175-02	Soil	04/12/06 09:43	04/13/06 12:00
HS-1 (4-6)	B604175-03	Soil	04/12/06 09:53	04/13/06 12:00
HS-1 (6-8)	B604175-04	Soil	04/12/06 09:59	04/13/06 12:00
HS-1 (8-10)	B604175-05	Soil	04/12/06 16:44	04/13/06 12:00
HS-3 (16-18)	B604175-06	Soil	04/12/06 17:27	04/13/06 12:00
HS-3 (26-28)	B604175-07	Soil	04/12/06 20:33	04/13/06 12:00
GP-7 (0-2)	B604175-08	Soil	04/12/06 20:43	04/13/06 12:00
GP-7 (4-6)	B604175-09	Soil	04/12/06 22:11	04/13/06 12:00
GP-8 (0-2)	B604175-10	Soil	04/12/06 22:23	04/13/06 12:00
GP-8 (6-8)	B604175-11	Soil	04/12/06 22:58	04/13/06 12:00
GP-8 (14.5-16)	B604175-12	Soil	04/12/06 14:43	04/13/06 12:00
HS-2 (10-12)	-	Soil	04/12/06 00:00	04/13/06 12:00
GP-7 (2-4)	B604175-13	3011	0.00000	

Sample Receipt Notes

Please note that the chain of custody (COC) included with this report is considered part of the report. The data user should review any comments or notes made on the COC. Any receipt issues found by the laboratory that are not noted on the COC will be stated below.

All sample container custody seals are intact.

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604175 Reported: 04/20/06 17:52

....

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
HS-1 (4-6) (B604175-02) Soil	Sampled: 04/12/06 09:43	Received:	04/13/06	12:00					
Acetone	ND	23.0	ug/kg dry	l	6040347	04/18/06	04/20/06	EPA 8260B	
Benzene	ND	4.59	17	11	11	*1		**	
Bromodichloromethane	ND	4.59	**	ii	**	"	**		
Bromoform	ND	4.59	17	11	"	**	17	n	
Bromomethane	ND	4.59	#1	u	*1	4	Ħ	"	
2-Butanone	ND	9.18	17	11	0	**	D)	ri P	
Carbon disulfide	ND	4.59	**	"	**		H	"	
Carbon tetrachloride	ND	4.59	n	**		н	v		
Chlorobenzene	ND	4.59	Ħ		н	•	H	"	
Chlorodibromomethane	ND	4.59	P	Ħ	"	Ħ	n	п	
Chloroethane	ND	4.59	**	U	**	U	11	**	
Chloroform	ND	4.59	37	n	v	**	"	"	
	ND	4.59	н	u	**	u	H	n	
Chloromethane	ND	4.59	n	**	n	Pt .		11	
1,1-Dichloroethane	ND	4.59	0	U	+1	**	**	Ħ	
1,2-Dichloroethane	ND ND	4.59	н	**	**	"	u	v	
1,1-Dichloroethene	ND ND	4.59	u	D	n	"	**	**	
cis-1,2-Dichloroethene	ND ND	4.59		92		n	u	n	
trans-1,2-Dichloroethene	ND ND	4.59		v	**	D	11	ħ	
1,2-Dichloropropane		2.75		**		*	.,	n	
1,3-Dichloropropene (cis + trans	s) ND	4,59			**	**	**	**	
Ethylbenzene	ND			**	D.	*	0	"	
2-Hexanone	ND	9.18		.,	**		n	**	
Methylene chloride	ND	4.59		**		**	**	u	
4-Methyl-2-pentanone	ND	9.18		0	*	**	n	**	
Methyl tert-butyl ether	ND	4.59		**		n	+1	v	
Styrene	ND	4.59			**	41	n	17	
1,1,2,2-Tetrachloroethane	ND	4.59		#		,,	,,	D	
Tetrachloroethene	ND	4.59			,,	,,		н	
Toluene	ND	4.59		**	,,	 H	"	"	
1,1,1-Trichloroethane	ND	4.59		v	**	"	 H	,,	
1,1,2-Trichlorocthane	ND	4.59					,,		
Trichloroethene	ND	4.59		11	"	н	,,	**	
Trichlorofluoromethane	ND	4.59	"	"	**	"		,,	
Vinyl acetate	ND	9.18	3 "	11	D.	н		**	
Vinyl chloride	ND	4.59	"	υ	11	77	n		
Total Xylenes	ND	9.18	3 "	"	1)	H		33	
		106 %	á 55.	9-150	"	"	"	n	
Surrogate: Dibromofluorometh	une As	113 %	-	5-150		**	. "	**	
Surrogate: 1,2-Dichloroethane	-A4	101 %		4-145	.,	,,	11	n	
Surrogate: Toluene-d8		92.2 %		.4-137	p	•		**	
Surrogate: 4-Bromofluorobenz	enc	92.2 %	g 40.	. 7 - 1 - 2 /					

TestAmerica Analytical - Buffalo Grove

Reviewed & Margaret Longo Approved by: The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604175 **Reported:** 04/20/06 17:52

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-7 (0-2) (B604175-07) Soil	Sampled: 04/12/06 20:33	Received	: 04/13/06	12:00					
Acetone	ND	23.4	ug/kg dry	1	6040347	04/18/06	04/20/06	EPA 8260B	
Benzene	ND	4.69	H	U	•	n	ıt	**	
Bromodichloromethane	ND	4.69	n	**	**	li.	**	i)	
Bromoform	ND	4.69	**	n	"	"	**	11	
Bromomethane	ND	4.69	н		10	H	•	n	
2-Butanone	ND	9.38	н	**	#1	B	**	u	
Carbon disulfide	ND	4.69	17	17	tt	ħ	p	#1	
Carbon tetrachloride	ND	4.69		н	**	11			
Chlorobenzene	ND	4.69	e	**	**	0	**		
Chlorodibromomethane	ND	4.69	**	D	n	71		Ħ	
Chloroethane	ND	4.69	0	Ħ	11	п	**	H	
Chloroform	ND	4.69	"	17	н	**	**	9	
Chloromethane	ND	4.69	15			**	"	н	
1.1-Dichloroethane	ND	4.69	n.	**	11	· ·	**	п	
1,2-Dichloroethane	ND	4.69	**	17	11	+1	н	o	
	ND	4.69	19	н	o	"	n	**	
1,1-Dichloroethene	ND	4.69	11	17	71	v	**	D	
cis-1,2-Dichloroethene	ND	4.69	ш	13	n	**	þs	**	
trans-1,2-Dichloroethene	ND ND	4.69	**	n	ч	11	· ·	n	
1,2-Dichloropropane		2.81	D	77	**	b	11	19	
1,3-Dichloropropene (cis + trans	ND ND	4.69	u	n	**	**	n	"	
Ethylbenzene	ND ND	9.38	11	"	tr		0	rt	
2-Hexanone	ND ND	4.69	H	12	**	v	**	o	
Methylene chloride	ND ND	9.38	11	11	18	71	n	н	
4-Methyl-2-pentanone		4.69		0		n		n	
Methyl tert-butyl ether	ND	4.69		**	**		**		
Styrene	ND	4.69		v		н	n	**	
1,1,2,2-Tetrachloroethane	ND	4.69		ęs	v	**	**	P .	
Tetrachloroethene	ND	4.69		11	71	,,	**	n	
Toluene	ND			17	n	**		**	
1,1,1-Trichloroethane	8.84	4.69		н	**	,,	*	n	
1,1,2-Trichloroethane	ND	4.69		17	ţ1		11	U	
Trichloroethene	ND	4.69		h	,,	**	,,	**	
Trichlorofluoromethane	ND	4.69		"	,	ь	**	,,	
Vinyl acetate	ND	9.38		*	"		»	o	
Vinyl chloride	ND	4.69		" It	"	**		*1	
Total Xylenes	ND	9.38							
Surrogate: Dibromofluoromethe	ane	105 %	55.	9-150	*	*	,,	**	
Surrogate: 1,2-Dichloroethane-		114 %	47	5-150	ıı	11	. "	н	
Surrogate: Toluene-d8		103 %	55.	4-145	q	"	17	11	
Surrogate: 4-Bromofluorobenzo	ene	103 %	40.	4-137	"	и	"	re	

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by

Margaret Knied

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604175 **Reported:** 04/20/06 17:52

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-8 (0-2) (B604175-09) Soil	Sampled: 04/12/06 22:11	Received	: 04/13/06	12:00					
Acelone	ND	23.1	ug/kg dry	l	6040347	04/18/06	04/20/06	EPA 8260B	
Benzene	ND	4.63	ıŧ	11	н	U	11	**	
Bromodichloromethane	ND	4.63	11	77	17	†1	11	n	
Bromoform	ND	4.63	Ħ	н	"	n	11	u	
Bromomethane	ND	4.63	*	**	*1	n	**	**	
2-Butanone	ND	9.25	17	n	11	U	n	**	
Carbon disulfide	ND	4.63	e	11	н	11	u	H	
Carbon tetrachloride	ND	4.63	11	17	n	и	11	· ·	
Chlorobenzene	ND	4.63	**	"	**	"	**	**	
Chlorodibromomethane	ND	4.63	15	n	Ħ	u	37	**	
Chloroethane	ND	4.63	U	u	H	ŧI	0	II .	
Chloroform	ND	4.63	rı .	Ħ	D	**	*1	n	
Chloromethane	ND	4.63	11	11	•	**	**	••	
1,1-Dichloroethane	ND	4.63	H	n	**	0	27	44	
1,2-Dichloroethane	ND	4.63	11	n	н	**	•	**	
1.1-Dichloroethene	ND	4.63	o	21	Ħ	Ħ	u u	D	
cis-1,2-Dichloroethene	ND	4.63	19	**	u	H	**	**	
trans-1,2-Dichloroethene	ND	4.63	54	**	**	**	**	**	
1,2-Dichloropropane	ND	4.63	11	v	11	u		e	
1,3-Dichloropropene (cis + trans		2.78	17	13	н	n	u	0	
Ethylbenzene	, ND	4.63	v	***	D	n	н	v	
2-Hexanone	ND	9.25	"	77	v	**	**	**	
Methylene chloride	ND	4.63	97	17	**	0	1)	**	
	ND	9.25	17		Ħ	**	44	D	
4-Methyl-2-pentanone	ND	4.63	11	ш	17	H	41	n	
Methyl tert-butyl ether	ND	4.63		**	ir	11	**	"	
Styrene	ND	4.63	71	17	u	0	•	15	
1,1,2,2-Tetrachloroethane	ND	4.63	н	n	11	Ţ1	н	н	
Tetrachloroethene	ND ND	4.63	n	n	n	h	п	iy.	
Toluene		4.63	n	н	n	•	**		
1,1,1-Trichloroethane	29.9	4.63	n	**	17	n	**	**	
1,1,2-Trichloroethane	ND		Ţ¥.	н	н	**	11	79	
Trichloroethene	ND	4.63	tt	n	**	71	••	"	
Trichlorofluoromethane	ND	4.63	p.	H	**	**	**	.,	
Vinyl acetate	ND	9.25		**	11	**	H	**	
Vinyl chloride	ND	4.63	0	**	0	0	ut.	**	
Total Xylenes	ND	9.25						27	
Surrogate: Dibromofluorometha		108 %		150	*	"		,,	
Surrogate: 1,2-Dichloroethane-	14	113 %		i-150	n	u	. "		
Surrogate: Toluene-d8		103 %		1-145	**	"	O	,	
Surrogate: 4-Bromofluorobenze	ne	101 %	40.4	1-137	"	19	19	*	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604175

Reported: 04/20/06 17:52

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-8 (6-8) (B604175-10) Soil	Sampled: 04/12/06 22:23	Received	: 04/13/06	12:00					
Acetone	ND	23.9	ug/kg dry	1	6040347	04/18/06	04/20/06	EPA 8260B	
Benzene	ND	4.78	11	17	11	*1	u u	**	
Bromodichloromethane	ND	4.78	n	D	D	79	н	**	
Bromoform	ND	4.78	•	**	0	11	11	15	
Bromomethane	ND	4.78	**	**	*1	**	H		
2-Butanone	ND	9.56	tr	11	11	,,	**		
Carbon disulfide	ND	4.78	17	15	h	11	ij	11	
Carbon tetrachloride	ND	4.78	11	D	17	**	rı.	**	
Chlorobenzene	ND	4.78	"	U	tr	,,	**	"	
Chlorodibromomethane	ND	4.78	**	**	H	IF.	"	"	
Chloroethane	ND	4.78	17	**	**	n	IT	II .	
Chloroform	ND	4.78	**	19	**	u u	U	II	
Chloromethane	ND	4.78		.,	11	11		Ħ	
1,1-Dichloroethane	12.2	4.78		**	υ	**	**	++	
1.2-Dichloroethane	ND	4.78	u		n	ıs	**	11	
1.1-Dichloroethene	11.0	4.78	**	**	**	n	IT	ü	
cis-1,2-Dichloroethene	ND	4.78	**	11	1*	**		"	
trans-1,2-Dichloroethene	ND	4.78	**	11	12	**	U	"	
1,2-Dichloropropane	ND	4.78	w	n	H	H	**	н	
1,3-Dichloropropene (cis + tran		2.87	"	н	n	11	**	11	
Ethylbenzene	ND	4.78	•	**	0	11	**	,,	
2-Hexanone	ND	9.56	11	**	71	a	n		
Methylene chloride	ND	4.78	**	H	*1	a	n	**	
-	ND	9.56	,,	n	1#	n	н	#1	
4-Methyl-2-pentanone	ND ND	4.78	**	v	n	p†	**	**	
Methyl tert-butyl ether	ND	4.78		0		**	**		
Styrene 1,1,2,2-Tetrachloroethane	ND	4.78	a	TI	**	u	**		
Tetrachloroethene	ND	4.78	**	**	**	n	n	u	
	ND	4.78	1*	l2	11	**	n	**	
Toluene 1,1,1-Trichloroethane	202	4.78	n	**	,,	*	н	**	
• •	ND	4.78	n		11	P	**	17	
1,1,2-Trichloroethane	ND ND	4.78		e e	n		**	D.	
Trichloroethene	ND	4.78		**	0		,,	11	
Trichlorofluoromethane		9.56		**	**	**	11		
Vinyl acetate	ND	9.36 4.78		H	72	#1	11	**	
Vinyl chloride	ND	4.78 9.56		.,	bf.	**	"	**	
Total Xylenes	ND				17	**		**	
Surrogate: Dibromofluorometh		114 %		-150	#	,,	**	**	
Surrogate: 1,2-Dichloroethane-	·d4	115 %		-150	**	ri ri	. **	**	
Surrogate: Toluene-d8		102 %		-145	,,		"	"	
Surrogate: 4-Bromofluorobenzo	ene	101 %	40.4	-137	"	"	"		

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Page 5 of 13

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Project Number: M061401
Oak Brook, IL 60523-2139 Project Manager: Kim Janson

Lab ID: B604175 Reported: 04/20/06 17:52

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
HS-2 (10-12) (B604175-12) Soil	Sampled: 04/12/06 14:43	Receive	ed: 04/13/(06 12:00					
Acetone	ND	22.4	ug/kg dry	l	6040347	04/18/06	04/20/06	EPA 8260B	
Benzene	ND	4.49	#1	ti.)†	11	11	**	
Bromodichloromethane	ND	4.49	**	tt	U	**	11	U	
Bromoform	ND	4.49	н	17	**	Ħ	***	tt.	
Bromomethane	ND	4.49	b	"	**	1)	H	H	
2-Butanone	ND	8.98	0		n	0	n	11	
Carbon disulfide	ND	4.49	**	21	D	74	11	O C	
Carbon tetrachloride	ND	4.49	n	**	**	n	11	#1	
Chlorobenzene	ND	4.49	U)1	11	u	11	D	
Chlorodibromomethane	ND	4,49	U	u	15	**	D		
Chloroethane	ND	4.49	н	11	"	Ħ	н	"	
Chloroform	ND	4.49	H	*1	**	n	TŤ	#	
Chloromethane	ND	4.49	u	1)	**	v	**	"	
1,1-Dichloroethane	ND	4.49	H	ti.		n		"	
1.2-Dichloroethane	ND	4.49	**	19	ę.	17	· ·	"	
1,1-Dichloroethene	ND	4.49	n	11	*1	11	11	н	
cis-1,2-Dichloroethene	ND	4.49	w	n	**	u	11	n	
trans-1,2-Dichloroethene	ND	4.49			,,	*	n	μ	
1,2-Dichloropropane	ND	4.49	**	•	**	†*	n	Ħ	
1,3-Dichloropropene (cis + trans)	ND	2.69	**	#	ti	п	**	**	
	ND	4.49	**		19	"	н	n	
Ethylbenzene 2-Hexanone	ND	8.98	•		n n	11	**	10	
Methylene chloride	ND	4.49		**	v	17	**	**	
•	ND	8.98		**	**	n	Ħ	**	
4-Methyl-2-pentanone	ND	4.49		n	**	10	n	n	
Methyl tert-butyl ether	ND ND	4,49		n	n	*1		h	
Styrene	ND ND	4.49		**	**	**	н	"	
1,1,2,2-Tetrachloroethane	ND	4.49		***	**	17	\$ 7	**	
Tetrachloroethene	ND	4.49		17	**	D	12	n	
Toluene	ND ND	4.49		,,,	11	**	O.	D	
1,1,1-Trichloroethane	ND ND	4.49			10	11	**	11	
1,1,2-Trichloroethane	ND ND	4.49		17	0	bş	n	**	
Trichloroethene	ND ND	4.49		**	**	U	79	**	
Trichlorofluoromethane		8.98		,,		,,	,,	,,	
Vinyl acetate	ND ND	6.96 4.49		,,	0	er	n	"	
Vinyl chloride		8.98		**	**	15	н	**	
Total Xylenes	ND		····			Pt	ři	*	
Surrogate: Dibromofluoromethan		108 %		0-150	.,	,,	,,	**	
Surrogate: 1,2-Dichloroethane-d-	4	115 %		5-150	,,		. ,,	,,	
Surrogate: Toluene-d8		102 %		1-145		"	"	"	
Surrogate: 4-Bromofluorobenzen	e	99.8 %	40.4	1-137	"	*	**	,,	

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Project: Sachnoff & Weaver Phase II

Project Number: M061401

Lab ID: B604175 Reported: 04/20/06 17:52

Oak Brook. IL 60523-2139

Project Manager: Kim Janson

Percent Solids

TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
HS-1 (4-6) (B604175-02) Soil	Sampled: 04/12/06 09:43	Received:	04/13/00	5 12:00					
% Solids	85.9	0.200	%	1	6040286	04/14/06	04/14/06	EPA 5035 7.5	
GP-7 (0-2) (B604175-07) Soil	Sampled: 04/12/06 20:33	Received:	04/13/0	6 12:00					
% Solids	85.6	0.200	%	1	6040286	04/14/06	04/14/06	EPA 5035 7.5	
GP-8 (0-2) (B604175-09) Soil	Sampled: 04/12/06 22:11	Received:	04/13/0	6 12:00					
% Solids	88.6	0.200	%	1	6040331	04/17/06	04/18/06	EPA 5035 7.5	
GP-8 (6-8) (B604175-10) Soil	Sampled: 04/12/06 22:23	Received	04/13/0	6 12:00					
% Solids	85.5	0.200	%	I	6040286	04/14/06	04/14/06	EPA 5035 7.5	
HS-2 (10-12) (B604175-12) So	il Sampled: 04/12/06 14:-	43 Receive	ed: 04/13	/06 12:00					
% Solids	89.1	0.200	%	ı	6040286	04/14/06	04/14/06	EPA 5035 7.5	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson

Lab ID: B604175 Reported: 04/20/06 17:52

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040347 - EPA 5035B [P/T]										
Blank (6040347-BLK1)				Prepared	& Analyz	ed: 04/18/	06			
Acetone	ND	25.0	ug/kg wet							
Benzene	ND	5.00	н							
Bromodichloromethane	ND	5.00	**							
Bromoform	ND	5.00	U							
Bromomethane	ND	5.00	"							
2-Butanone	ND	10.0	Ħ							
Carbon disulfide	ND	5.00	н							
Carbon tetrachloride	ND	5.00	1)							
Chlorobenzene	ND	5.00	e s							
Chlorodibromomethane	ND	5.00	71							
Chloroethane	ND	5.00	**							
Chloroform	ND	5.00	0							
Chloromethane	ND	5.00	**							
1,1-Dichloroethane	ND	5.00	ÞΤ							
1,2-Dichloroethane	ND	5.00	n							
1,1-Dichloroethene	ND	5.00	11							
cis-1,2-Dichloroethene	ND	5.00	н							
trans-1,2-Dichloroethene	ND	5.00	**							
1,2-Dichloropropane	ND	5.00	ij							
1,3-Dichloropropene (cis + trans)	ND	3.00	11							
Ethylbenzene	ИD	5.00	37							
2-Hexanone	ND	10.0	n							
Methylene chloride	ND	5.00	н							
4-Methyl-2-pentanone	ND	10.0	**							
Methyl tert-butyl ether	ND	5.00	11							
Styrene	ND	5.00	U							
1,1,2,2-Tetrachloroethane	ND	5.00	11							
Tetrachloroethene	ND	5.00	, m							
Toluene	ND	5.00	, ,							
1,1,1-Trichloroethane	ND	5.00								
1,1,2-Trichloroethane	ND	5.00	**							
Trichloroethene	ND	5.00	n							
Trichlorofluoromethane	ND	5.00								
Vinyl acetate	ND	10.0	"							
Vinyl chloride	ND	5.00	"							

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Approved by:

Margaret Kniest, Extractionist

Page 8 of 13

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604175 **Reported:** 04/20/06 17:52

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

	····									
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040347 - EPA 5035B [P/T]	~~~~		*****				***			
Blank (6040347-BLK1)				Prepared	& Analyzo	ed: 04/18/	'06			
Total Xylenes	ND	10.0	ug/kg wet			***************************************				
Surrogate: Dibromofluoromethane	49.5		n	50.0		99.0	55.9-150	······		
Surrogate: 1,2-Dichloroethane-d4	48.5		**	50.0		97.0	47.5-150			
Surrogate: Toluene-d8	50.7		n	50.0		101	55.4-145			
Surrogate: 4-Bromofluorobenzene	47.5		**	50.0		95.0	40.4-137			
LCS (6040347-BS1)				Prepared:	04/18/06	Analyzeo	1: 04/19/06			
Acetone	129	25.0	ug/kg wet	100		129	10-150			***************************************
Benzene	47.3	5.00	H	50.0		94.6	54.8-130			
Bromodichloromethane	50.5	5.00	H	50.0		101	55.7-137			
Вготобопп	48.3	5.00	17	50.0		96.6	48.6-150			
Bromomethane	49.1	5.00	"	50.0		98.2	10-150			
2-Butanone	123	10.0	и	100		123	10-150			
Carbon disulfide	96.5	5.00	11	100		96.5	10-150			
Carbon tetrachloride	44.5	5.00	н,	50.0		89.0	43.4-141			
Chlorobenzene	46.5	5.00	u.	50.0		93.0	56.2-127			
Chlorodibromomethane	49.7	5.00	u	50.0		99.4	54.1-142			
Chloroethane	55.4	5.00	**	50.0		111	10-150			
Chloroform	49.0	5.00	*	50.0		98.0	53.7-135			
Chloromethane	51.5	5.00	*1	50.0		103	12.4-150			
1,1-Dichloroethane	48.0	5.00		50.0		96.0	47.4-139			
1,2-Dichloroethane	49.1	5.00	n .	50.0		98.2	54.6-140			
1,1-Dichloroethene	48.6	5.00	††	50.0		97.2	35.5-135			
cis-1,2-Dichloroethene	48.4	5.00	н	50.0		96.8	52.5-136			
trans-1,2-Dichloroethene	48.3	5.00	n	50.0		96.6	47.8-133			
1,2-Dichloropropane	45.5	5.00	u	50.0		91.0	68.3-124			
1,3-Dichloropropene (cis + trans)	96.2	3.00	ŧţ	100		96.2	60.9-140			
Ethylbenzene	45.8	5.00	11	50.0		91.6	50.7-127			
2-Hexanone	132	10.0	v	100		132	10-150			
Methylene chloride	50.2	5.00	,,	50.0		001	25.4-150			
1-Methyl-2-pentanone	131	10.0	H	100		131	10-150			
Methyl tert-butyl ether	49,9	5.00	**	50.0		99.8	47.3-150			
Styrene	45.6	5.00		50.0		91.2	48.3-127			
I, I.2.2-Tetrachioroethane	55.3	5.00	n	50.0		[1]	30.4-150			
Fetrachloroethene	45.5	5.00	11	50.0		91.0	46.7-131			
Toluene	46.3	5.00	u	50.0		92.6	53.6-127			
	· W	2.1/13		~.v		7±.0	JJ.0-127			

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by:

custody document. This analytical report must be reproduced in its entirety.

The results in this report apply to the samples analyzed in accordance with the chain of

Margaret Kniest, Extractionist

Page 9 of 13

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

Spike

Source

%REC

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project Number: M061401 Project Manager: Kim Janson

Reporting

Lab ID: B604175

RPD

Reported: 04/20/06 17:52

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6040347 - EPA 5035B [P/T]		*****	***************************************	······································						
LCS (6040347-BS1)				Prepared:	04/18/06	Analyzed	1: 04/19/06			
1,1,1-Trichloroethane	48.1	5.00	ug/kg wet	50.0		96.2	49.3-136			
1,1,2-Trichloroethane	53.5	5.00	a	50.0		107	57.2-146			
Trichloroethene	45.7	5.00	v	50.0		91.4	55-128			
Trichlorofluoromethane	44.8	5.00	D	50.0		89.6	10-150			
Vinyl acetate	84.8	10.0	11	100	•	84.8	10-150			
Vinyl chloride	47.3	5.00	,,	50.0		94.6	28.4-150			
Total Xylenes	134	0.01	n	150		89.3	43.1-136			
Surrogate: Dibromofluoromethane	53.1		,,	50.0		106	55.9-150			
Surrogate: 1,2-Dichloroethane-d4	53.4		"	50.0		107	47.5-150			
Surrogate: Toluene-d8	51.4		"	50.0		103	55.4-145			
Surrogate: 4-Bromofluorobenzene	53.5		**	50.0		107	40.4-137			
LCS Dup (6040347-BSD1)				Prepared:	04/18/06	Analyzec	1: 04/19/06			
Acetone	127	25.0	ug/kg wet	100		127	10-150	1.56	35	
Benzene	49.2	5.00	P+	50.0		98.4	54.8-130	3.94	35	
Bromodichloromethane	52.0	5.00	**	50.0		104	55.7-137	2.93	31.6	
Bromoform	50.4	5.00	**	50.0		101	48.6-150	4.26	35	
Bromomethane	49.1	5.00	"	50.0		98.2	10-150	0.00	35	
2-Butanone	132	10.0	ø	100		132	10-150	7.06	35	
Carbon disulfide	98.2	5.00	0	100		98.2	10-150	1.75	35	
Carbon tetrachloride	46.3	5.00	n	50.0		92.6	43.4-141	3.96	35	
Chlorobenzene	48.7	5.00	h	50.0		97.4	56.2-127	4.62	35	
Chlorodibromomethane	. 51.6	5.00		50.0		103	54.1-142	3.75	34	
Chloroethane	56.5	5.00	tı	50.0	**	113	10-150	1.97	35	
Chloroform	50.4	5.00	•	50.0		101	53.7-135	2.82	32.2	
Chloromethane	51.2	5.00	U	50.0		102	12.4-150	0.584	35	
,1-Dichloroethane	48.8	5.00	tr	50.0		97.6	47.4-139	1.65	35	
.2-Dichloroethane	50.0	5.00	1)	50.0		100	54.6-140	1.82	31.5	
, l-Dichloroethene	48.6	5.00	H	50.0		97.2	35.5-135	0.00	35	
cis-1,2-Dichloroethene	50.4	5.00	**	50.0		101	52.5-136	4.05	32.9	
rans-1,2-Dichloroethene	50.4	5.00	**	50.0		101	47.8-133	4.26	35	
.2-Dichloropropane	47.5	5.00	"	50.0		95.0	68.3-124	4.30	27.4	
.3-Dichloropropene (cis + trans)	98.6	3.00		001		98.6	60.9-140	2.46	35	
Ethylbenzene	48.2	5.00	,,	50.0		96.4	50.7-127	5.11	35	
		10.0	**	100						
!-Hexanone	136	10.0		100		136	10-150	2.99	35	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Extractionist

Page 10 of 13

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Project: Sachnoff & Weaver Phase II

Spike

Source

Project Number: M061401

Reporting

Lab ID: B604175

RPD

%REC

Oak Brook, IL 60523-2139 Project Manager: Kim Janson

Reported: 04/20/06 17:52

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6040347 - EPA 5035B [P/T]		·	***************************************	······································		····				
LCS Dup (6040347-BSD1)				Prepared:	04/18/06	Analyzed	1: 04/19/06			
4-Methyl-2-pentanone	134	10.0	ug/kg wet	100		134	10-150	2.26	35	
Methyl tert-butyl ether	50.7	5.00	U	50.0		101	47.3-150	1.59	35	
Styrene	47.0	5.00	**	50.0		94.0	48.3-127	3.02	35	
1,1,2.2-Tetrachloroethane	56.0	5.00	10	50.0		112	30.4-150	1.26	35	
Tetrachloroethene	49.1	5.00		50.0		98.2	46.7-131	7.61	35	
Toluene	48.5	5.00	10	50.0		97.0	53.6-127	4.64	35	
1,1,1-Trichloroethane	49.0	5.00	n	50.0		98.0	49.3-136	1.85	35	
1,1,2-Trichloroethane	54.2	5.00	Ħ	50.0		108	57.2-146	1.30	30.2	
Trichloroethene	48.0	5.00	**	50.0		96.0	55-128	4.91	35	
Trichlorofluoromethane	46.9	5.00	**	50.0		93.8	10-150	4.58	35	
Vinyl acetate	68.7	10.0	"	100		68.7	10-150	21.0	35	
Vinyl chloride	47.8	5.00	"	50.0		95.6	28.4-150	1.05	35	
Total Xylenes	143	0.01	19	150		95.3	43.1-136	6.50	35	
Surrogate: Dibromofluoromethane	52.5	, , , , , , , , , , , , , , , , , , , 	Pf	50.0		105	55.9-150		***************************************	***** · · · · · · · · · · · · · · · · ·
Surrogate: 1,2-Dichloroethane-d4	52.0		,,	50.0		104	47.5-150			
Surrogate: Toluene-d8	51.3		•	50.0		103	55.4-145			
Surrogate: 4-Bromofluorobenzene	53.4		"	50.0		107	40.4-137			

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by: r

Phone: (847) 808-7766 Fax: (847) 808-7772

Reported: 04/20/06 17:52

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project Number: M061401 Project Manager: Kim Janson Lab ID: B604175

Percent Solids - Quality Control TestAmerica Analytical - Buffalo Grove

	Reporting Spike Source %REC								RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6040286 - General Prep					·····					
Blank (6040286-BLK1)				Prepared a	& Analyz	ed: 04/14/()6			
% Solids	ND	0.200	%							
Duplicate (6040286-DUP1)	Sou	rce: B60416	6-01	Prepared a	& Analyz	ed: 04/14/0)6			
% Solids	80.4	0.200	%		79.7			0.874	20	
Batch 6040331 - General Prep										
Blank (6040331-BLK1)				Prepared:	04/17/06	Analyzed	: 04/18/06			
% Solids	ND	0.200	0/0		***************************************			hamilianii		
Blank (6040331-BLK2)				Prepared:	04/17/06	Analyzed	: 04/18/06			
% Solids	ND	0.200	%	o comment of the second						
Duplicate (6040331-DUP1)	Sou	rce: B60417	5-09	Prepared:	04/17/06	Analyzed	04/18/06			
% Solids	86.8	0.200	%		88.6			2.05	20	1.1111111111111111111111111111111111111
Duplicate (6040331-DUP2)	Sou	rce: B60420	5-01	Prepared: 04/17/06 Analyzed: 04/18/06						
% Solids	83.0	0.200	9%		83.1			0.120	20	

TestAmerica Analytical - Buffalo Grove

Reviewed &

e Margaret Knied

Margaret Kniest, Extractionist

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604175 **Reported:** 04/20/06 17:52

Notes and Definitions

DET

Analyte DETECTED

ND

Analyte NOT DETECTED at or above the reporting limit

NR

Not Reported

dry

Sample results reported on a dry weight basis

RPD

Relative Percent Difference

L.

This quality control measurement is below the laboratory established limit.

Н

This quality control measurement is above the laboratory established limit.

 \wedge

The laboratory is not NELAP accredited for this analyte by the indicated matrix and method.

The State of Illinois Accrediting Authority does not offer NELAP accreditation for this analyte by the indicated matrix and method.

Note: All analytes, by matrix and method, are accredited following current NELAP standards unless specifically noted by way of a qualifier listed above.

TestAmerica--Buffalo Grove, IL Wisconsin DNR Certification Lab ID: 999917160

TestAmerica--Buffalo Grove, IL NELAP Primary Accreditation: Illinois #100261

TestAmerica--Buffalo Grove, IL NELAP Secondary Accreditation: New Jersey #IL001

TestAmerica--Nashville, TN NELAP Secondary Accreditation: Illinois #200010

TestAmerica--Dayton. OH NELAP Secondary Accreditation: Illinois #200008

TestAmerica--Watertown, W1 NELAP Primary Accreditation: Illinois #100453

TestAmerica--Watertown, WI Wisconsin DNR Certification Lab ID: 128053530

TestAmerica Analytical - Buffalo Grove

Approved by:

Margaret Kniest, Extractionist

Sample Temp: ## Signature; Pointed Name: Mostarch Party Cu company: background concentrations and remediation objectives * Run metal analyses using methods with lowest reporting limit needed to meet TACO Purchase Order Number: Project Name: Project Number: 1520 Kensington Road, Suite 204, Oak Brook, Illinois 60523-2139 Phone: 630-993-2100 Fax: 630-993-9017 Delivered Via: MOSTARDI PLATT ENVIRONMENTAL - CHAIN OF CUSTODY 0 M Jansmy/13/06 Relinquished by Plucuse Subcontracted Laboratory Sample ID 24 hr. 25 10:30 Herwicker 02190W] 48 hr. \mathcal{O} 0% 0 200 þ, \supset Pin Yemp- 6000 Chain Stephamic: Printed Name: Condition of Sample Containers: FS-1 Received by: 1. wk. MPA Sample Point ID PROJECT INFORMATION <u>ک</u> a cryotocy seve Leaver 9-7. 4-10 222] 2 wk. COMMENTS 14.5-16 Alisla ė 10:30 lime: Reporting Dry Weight Page Project Manager: Sample Collection Date Printed Name: 1266 Relinquished by: 1. 22:23 22,58 25/08/ 19.43 22: 11 28.18X 17:27 16:44 25.6 Sample Collection Time Date (13/04 (0) 50 つくろうろくろ Sφ. water Sample Matrix S)em/dure/ 1 Home Wet Weight Containers and Size Received by: Number of 智 + BTEX by 5035/8021 0 G BTEX by 5035/8260B Date 4/12/06 PNAs by 8310 REQUESTED Relinquished by: VOCs by 5035/8260B SVOCs by 8270C PRESERVATIVE PCBs by 8082 SAMPLE Pesticides by 8081A Total RCRA Metals * 6010B/7000A Signature Laboratory: Page Total Priority Pollutant* pled Name: ANALYSIS Received by: (lab) Metals 6010B/7000A Organic Carbon Content -Mayo by ASTM 2974-87

Welling is the by in let 14 Sample Temp: 4°C Company: W background concentrations and remediation objectives. * Run metal analyses using methods with lowest reporting limit needed to meet TACO TAT: Project Name: Sac Jana 97 34 Wall Ald Purchase Order Number: Project Number: 1520 Kensington Road, Suite 204, Oak Brook, Illinois 60523-2139 Phone: 630-993-2100 Fax: 630-993-9017 Delivered Via: MOSTARDI PLATT ENVIRONMENTAL - CHAIN OF CUSTODY Relinquished by Please Subcontracted Laboratory] 24 hr. うだっ 4-11-06 25 48 hr. Company: Condition of Sample Containers: Printed Name: Signature: Time: Time: 15:45 学为 Manson 4/12/01/2 MACK LAN Received by: 1. PROJECT INFORMATION MPA Sample Point ID 10-12 2 wk. COMMENTS Chross hours son Reporting: Hary Weight Project Manager: 4 Sample Collection Hostourali Plust Env Signature: Printed Name: Date: Date 112/01/01 Relinquished by: 1. 14:43 1ab temp you Recoved: I know Sample Collection A A antonar 10:30 50 Sample Matrix 12 X X Company: A 3700L Cloude & Ways II Printed Name: Wet Weight Containers and Size Received by: 2. Service Services Number of 10:30 4/13/06 BTEX by 5035/8021 c^{\prime} BTEX by 5035/8260B Company: PE 5 Printed Name: PNAs by 8310 REQUESTED SAMPLE Relinquished by: VOCs by 5035/8260B SVOCs by 8270C PRESERVATIVE PCBs by 8082 Date: 4/13/06 10:50 Pesticides by 8081A 'n TO SE Total RCRA Metals * TANKE THE 6010B/7000A Page Total Priority Pollutant* 2888 ANALYSIS Metals 6010B/7000A Received/by: (lab) ð Organic Carbon Content by ASTM 2974-87 4/20

"Margaret Kniest" <mkniest@testamericainc.co m>

04/20/2006 05:54 PM

To <KJanson@mostardiplattenv.com>

CC

bcc

Subject Sachnoff

Kim

Here is everything except the trip blank, which will be completed by tomorrow.

Thank you,

Margaret Kniest TestAmerica 1380 Busch Pkway Buffalo Grove, IL 60089 847-808-7766 ext 30 mkniest@testamericainc.com

B604175 042006 1752 final.pdf B604175 COC.pdf B604175 FINAL EXCEL 20 Apr 06 1752.xls

529

B604175 FINAL SMART REPORT 20 Apr 06 1752.xls

24 April 2006

1380 Busch Parkway Buffalo Grove, Illinois 60089

Lab ID: B604175

Phone: (847) 808-7766

Fax: (847) 808-7772

Kim Janson Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

RE: Sachnoff & Weaver Phase II

Enclosed are the results of analyses for samples received by the laboratory on 04/13/06. The sample results relate only to the tested analytes of interest and to the sample as received by the laboratory. At the time of analysis, the laboratory was in compliance with current NELAP standards and held accreditation for all analyses performed unless noted by a qualifier. The laboratory's Illinois NELAP accreditation number is 100261.

This report can not be reproduced, except in full, without written approval from the laboratory. If you have any questions concerning this report, please feel free to contact Jim Knapp or Margaret Kniest.

Sincerely,

TestAmerica Analytical Testing Corporation

Julie Meyer

Laboratory Director

James Knapp

Quality Assurance Manager

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental Project: Sachnoff & Weaver Phase II

 1520 Kensington Road Suite 204
 Project Number: M061401
 Lab ID: B604175

 Oak Brook, IL 60523-2139
 Project Manager: Kim Janson
 Reported: 04/24/06 10:46

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Trip Blank	B604175-01	Water	04/12/06 00:00	04/13/06 12:00
HS-1 (4-6)	B604175-02	Soil	04/12/06 09:43	04/13/06 12:00
HS-1 (6-8)	B604175-03	Soil	04/12/06 09:53	04/13/06 12:00
HS-1 (8-10)	B604175-04	Soil	04/12/06 09:59	04/13/06 12:00
HS-3 (16-18)	B604175-05	Soil	04/12/06 16:44	04/13/06 12:00
HS-3 (26-28)	B604175-06	Soil	04/12/06 17:27	04/13/06 12:00
GP-7 (0-2)	B604175-07	Soil	04/12/06 20:33	04/13/06 12:00
GP-7 (4-6)	B604175-08	Soil	04/12/06 20:43	04/13/06 12:00
GP-8 (0-2)	B604175-09	Soil	04/12/06 22:11	04/13/06 12:00
GP-8 (6-8)	B604175-10	Soil	04/12/06 22:23	04/13/06 12:00
GP-8 (14.5-16)	B604175-11	Soil	04/12/06 22:58	04/13/06 12:00
HS-2 (10-12)	B604175-12	Soil	04/12/06 14:43	04/13/06 12:00
GP-7 (2-4)	B604175-13	Soil	04/12/06 00:00	04/13/06 12:00

Sample Receipt Notes

Please note that the chain of custody (COC) included with this report is considered part of the report. The data user should review any comments or notes made on the COC. Any receipt issues found by the laboratory that are not noted on the COC will be stated below.

All sample container custody seals are intact.

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Phone: (847) 808-7766 Fax: (847) 808-7772

Lab ID: B604175

Reported: 04/24/06 10:46

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Analytical - Buffalo Grove

Analyte	Rep Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Trip Blank (B604175-01) Water				/06 12:00		,	-		QC
Acetone	ND	10.0	ug/l	1	6040385	04/19/06	04/20/06	EPA 8260B	
Benzene	ND	2.00	"5"	17	"	11	17	"	
Bromodichloromethane	ND	2.00	D	n	н	ŧŧ	11	u	
Bromoform	ND	1.00	11	D	н	tt	п	11	
Bromomethane	ND	2.00	n	17	#1	ti	D.	n .	
2-Butanone	ND	10.0	11	U	11	11	U	**	
Carbon disulfide	ND	2.00	11	a	12	u	u	**	
Carbon disunide	ND	2.00	п	Ħ	H	n	н	Ħ	
Chlorobenzene	ND	2.00	11	ft.	н	ti	70	n	
Chlorodibromomethane	ND	2.00	*1	**	17	71	11	"	
Chloroethane	ND ND	2.00	,,	74	U	71	**	11	
Chloroform	ND	2.00	19	15	U	Ħ	**	n	
Chloromethane	ND	2.00	n	11	*1	**	n	n	
1,1-Dichloroethane	ND	2.00	u	n	**	**	v	n.	
1,1-Dichloroethane	ND ND	2.00	u	n	†ŧ	1)	p.	u	
1,1-Dichloroethene	ND	2.00	U	n	#1	0	U	н	
•	ND ND	2.00			75	Ħ	u	n	
cis-1,2-Dichloroethene	ND ND	2.00	19	**	11	*1	**	**	
trans-1,2-Dichloroethene	ND ND	2.00	**	**	D	Ħ	a	**	
1,2-Dichloropropane	ND ND	2.00	**	11	.,	**	**) 7	
1,3-Dichloropropene (cis + trans)	ND ND	2.00	37	12	Đ	Ħ	**	19	
Ethylbenzene	•	10.0	**	79		н	"	D	
2-Hexanone	ND ND	2.00	,,	,,		n	n)	
Methylene chloride	ND ND		n	bt .	**	it.	ir	 D	
4-Methyl-2-pentanone	ND ND	10.0			" H	r r	" n	u u	
Methyl tert-butyl ether	ND	2.00	,,	u u	31	··	n	0	
Styrene	ND	2.00	.,	"	,,	,,	" "	"	
1,1,2,2-Tetrachloroethane	ND	2.00	0	"	17 17	"	.,	"	
Tetrachloroethene	ND	2.00	"	**	P P	"	"	"	
Toluene	ND	2.00	11	**	n H	11	11	"	
1,1,1-Trichloroethane	ND	2.00	#	11	17	11	**	"	
1,1,2-Trichloroethane	ND	2.00		"	"	"	"	"	
Trichloroethene	ND	2.00	**	**	0	H	11	n	
Trichlorofluoromethane	ND	2.00	"	** **	0	H H	17	19	
Vinyl acetate	ND	2.00	**	"		17	"	1)	
Vinyl chloride	ND	2.00	17	"	**				
Total Xylenes	ND	4.00	н		71		11	"	
Surrogate: Dibromofluoromethane		95.8%		-133	n	,,	"	tt	
Surrogate: 1,2-Dichloroethane-d4		97.6%	61.2	-141	"	,,	. 11	ν	
Surrogate: Toluene-d8		101 %		-118	"	n	"	,,	
Surrogate: 4-Bromofluorobenzene		98.4 %		-123	ø	11	p	n	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604175 **Reported:** 04/24/06 10:46

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
HS-1 (4-6) (B604175-02) Soil	Sampled: 04/12/06 09:43	Received	: 04/13/06	12:00					
Acetone	ND	23.0	ug/kg dry	1	6040347	04/18/06	04/20/06	EPA 8260B	
Benzene	ND	4.59	H	n	**	**	**	н	
Bromodichloromethane	ND	4.59	H	1)	**	**	**	**	
Bromoform	ND	4.59	17	n	**	11	***	н	
Bromomethane	ND	4.59	n	n	#1	19	**	14	
2-Butanone	ND	9.18	"	ti	**	11	11	п .	
Carbon disulfide	ND	4.59	0	u	Ħ	11	n	Ħ	
Carbon tetrachloride	ND	4.59	n	"	N7	H	n	#	
Chlorobenzene	ND	4.59	u		lt .	n	11	Ħ	
Chlorodibromomethane	ND	4.59	0	a	N\$	ht	II.	19	
Chloroethane	ND	4.59		n	bī	п	D	†1	
Chloroform	ND	4.59	0	**	by	17	n	**	
Chloromethane	ND	4.59	**	**	**	II .	n	17	
1,1-Dichloroethane	ND	4.59	н	11	n	u	"	"	
1,2-Dichloroethane	ND	4.59	0	**		υ		н	
1,1-Dichloroethene	ND	4.59	11	**	11	1)	n	rt .	
cis-1,2-Dichloroethene	ND	4.59	**	**	U	n n	u	n	
trans-1,2-Dichloroethene	ND	4.59	11	**		11	11	n	
1,2-Dichloropropane	ND	4.59	**	n	v	u	п	"	
1,3-Dichloropropene (cis + tran	s) ND	2.75	11	**	0	n	11	H	
Ethylbenzene	ND	4.59	**	**		u	**	11	
2-Hexanone	ND	9.18	11	tt .	w	**	н	п	
Methylene chloride	ND	4.59	**	11	"	11	11	n	
4-Methyl-2-pentanone	ND	9.18	**	*	**	**		n	
Methyl tert-butyl ether	ND	4.59	**	n	v	**	"	n	
Styrene	ND	4.59	39	п	н	**	#1	n	
1,1,2,2-Tetrachloroethane	ND	4.59	11	**	**	11	Ħ	n	
Tetrachloroethene	ND	4.59	**	15	**	**	*1	11	
Toluene	ND	4.59	17	n	**	**	н	17	
1,1,1-Trichloroethane	ND	4.59	**	**	n	##	11	11	
1,1,2-Trichloroethane	ND	4.59	**	11	**	Ħ	***	н	
Trichloroethene	ND	4.59	Ħ	"	Ħ	11	***	B	
Trichlorofluoromethane	ND	4.59	H	"	**	11	**	H	
Vinyl acetate	ND	9.18	Ħ		*1	15	Ħ	11	
Vinyl chloride	ND	4.59	**	D	11	H	**	n	
Total Xylenes	ND	9.18	**	U	*1	n	**	T)	
Surrogate: Dibromofluorometh	ane	106 %	55.9	-150	n	n	ti	"	
Surrogate: 1,2-Dichloroethane-		113 %	47.5		n	a	. "	,,	
Surrogate: Toluene-d8		101 %	55.4		,,	**	"	**	
Surrogate: 4-Bromofluorobenze	ne	92.2 %	40.4		"	"	"	**	
S Ogurta / D. omografio Obertal		17		•					

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Jahnson

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Project Number: M061401 Lab ID: B604175
Oak Brook, IL 60523-2139 Project Manager: Kim Janson Reported: 04/24/06 10:46

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-7 (0-2) (B604175-07) Soil	Sampled: 04/12/06 20:33	Received	: 04/13/06	12:00					
Acetone	ND	23.4	ug/kg dry	1	6040347	04/18/06	04/20/06	EPA 8260B	
Benzene	ND	4.69	ii .	u	17	Ħ	H	п	
Bromodichloromethane	ND	4.69	u	U	n	н	"	IT	
Bromoform	ND	4.69	n	()	11	**	"	n	
Bromomethane	ND	4.69	ŧ1	v	H	**		D	
2-Butanone	ND	9.38	**	ti	D	Ħ	n	n	
Carbon disulfide	ND	4.69	**	*1	n	#	н	ti	
Carbon tetrachloride	ND	4.69	**	**	0		**	u	
Chlorobenzene	ND	4.69	11	†•	0	15	**	u u	
Chlorodibromomethane	ND	4.69	n	71	u	h	Ħ	11	
Chloroethane	ND	4.69	11	71	н	it.	Ħ	Ħ	
Chloroform	ND	4.69	"	17	11	"	**	Ħ	
Chloromethane	ND	4.69	17	H	*1	v	H	**	
1.1-Dichloroethane	ND	4.69	1)	0	**	u	Ħ	**	
1,2-Dichloroethane	ND	4.69	U	11	11	71	H	Ħ	
1.1-Dichloroethene	ND	4.69	· ·	U	#	"	D	#	
cis-1,2-Dichloroethene	ND	4.69	D	"	н	**	n	n	
trans-1,2-Dichloroethene	ND	4.69	D	v	D	17	0	**	
1,2-Dichloropropane	ND	4.69	n		n	n	11	n	
1,3-Dichloropropene (cis + trans)	ND	2.81	u	0	H	IT	u	n	
Ethylbenzene	ND	4.69	**	n		**	*1	n	
2-Hexanone	ND	9.38	**	**	19	n	11	ŋ	
Methylene chloride	ND	4.69	*1	**	11	η	#1	ŋ	
4-Methyl-2-pentanone	ND	9.38	11	11	u u	n n	17	u	
Methyl tert-butyl ether	ND	4.69	11	**	U	u	16	n	
Styrene	ND	4.69	31	11	U	u	**	U	
1,1,2,2-Tetrachloroethane	ND	4.69	Ħ	**	**	ų)†	0	
Tetrachioroethene	ND	4.69	11	H	a	a	Þτ	н	
Toluene	ND	4.69	17	H	**	"	H	Ħ	
1,1,1-Trichloroethane	8.84	4.69	97	Ħ	0	u	H	11	
1,1,2-Trichloroethane	ND	4.69	37)+	ti	†1	ir.	st.	
Trichloroethene	ND	4.69	н	H	11	Ħ	U	**	
Trichlorofluoromethane	ND	4.69	n	н	**	**	U	**	
Vinyl acetate	ND	9.38	**	**	"	**	n.	H	
Vinyl chloride	ND	4.69	n	0	*1	11	**	н	
Total Xylenes	ND	9.38	11	u	r	**	tı	n	
Surrogate: Dibromofluoromethan		105 %	55.9-	150	"	"	11	"	
Surrogate: 1,2-Dichloroethane-d		114 %	47.5		**	**	, "	èr	
Surrogate: Toluene-d8	•	103 %	55.4-		**	ŧŧ	'n	**	
Surrogate: 4-Bromofluorobenzen	e	103 %	40.4		**	σ	**	н	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project Number: M061401 Project Manager: Kim Janson Lab ID: B604175

Reported: 04/24/06 10:46

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-8 (0-2) (B604175-09) Soil	Sampled: 04/12/06 22:11	Received	: 04/13/06	12:00					
Acetone	ND	23.1	ug/kg dry	1	6040347	04/18/06	04/20/06	EPA 8260B	
Benzene	ND	4.63	*1	n		*1	н	11	
Bromodichloromethane	ND	4.63	Ħ	"	u	"	II.	11	
Bromoform	ND	4.63	76	"	0	**	II .	**	
Bromomethane	ND	4.63	#T	"	n	11	II.	11	
2-Butanone	ND	9.25	Ħ	11	11	+1	U	11	
Carbon disulfide	ND	4.63	n	"	**	11	u	#	
Carbon tetrachloride	ND	4.63	11	**	N	**	n	17	
Chlorobenzene	ND	4.63	17	***	ti	"	n	n	
Chlorodibromomethane	ND	4.63	n	Ħ	**	H	tt	P	
Chloroethane	ND	4.63	n	12	**	"	**	n	
Chloroform	ND	4.63	U	**	**	"	н	n	
Chloromethane	ND	4.63	U	**	**	n	**	17	
1,1-Dichloroethane	ND	4.63	0	***	*1	n	11	11	
1,2-Dichloroethane	ND	4.63		**	"	"	Ħ	"	
1,1-Dichloroethene	ND	4.63	u	n	n	"	11	II .	
cis-1,2-Dichloroethene	ND	4.63	n	**	н	n	n	n	
trans-1,2-Dichloroethene	ND	4.63	n	t†	п	u	n	n	
1,2-Dichloropropane	ND	4.63	n	**	н	u	n	n	
1,3-Dichloropropene (cis + trans	ND	2.78	н	H	n	н	*	U	
Ethylbenzene	ND	4.63	**	11	11	**	n	U	
2-Hexanone	ND	9.25	11	н	ņ	a	1ÿ	U	
Methylene chloride	ND	4.63	**	n	n	u	n	11	
4-Methyl-2-pentanone	ND	9.25	17	**	0	**	II	11	
Methyl tert-butyl ether	ND	4.63	11	**	n	17	n	a	
Styrene	ND	4.63	**	"	O O	**	n	11	
1,1,2,2-Tetrachioroethane	ND	4.63	**	n	u	**	u	†1	
Tetrachloroethene	ND	4.63	*1	n	n	12	II.	n	
Toluene	ND	4.63	**	n	a	**	u	11	
1,1,1-Trichloroethane	29.9	4.63	**	n	**	"	0	п	
1,1,2-Trichloroethane	ND	4.63	**	n	11	n	ĮI.	11	
Trichloroethene	ND	4.63	**	11	**	n	*11	Ħ	
Trichlorofluoromethane	ND	4.63	**		**	11	"	Ħ	
Vinyl acetate	ND ND	9.25	**	"	n	n	**	**	
Vinyl chloride	ND	4.63	H	11	**	16	п	#	
Total Xylenes	ND	9.25	н	11	**	11	**	n	
Surrogate: Dibromofluorometha		108 %	55.9	150	n	"	"	r	
		113 %	47.5		**	,,	. 0	29	
Surrogate: 1,2-Dichloroethane-	27	103 %	55.4·			,,		et	
Surrogate: Toluene-d8		103 %	33.4. 40.4		,,	,,	"	,,	
Surrogate: 4-Bromofluorobenze	ne	101 %	40.4	-12/					

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Project Number: M061401
Oak Brook, IL 60523-2139 Project Manager: Kim Janson

Lab ID: B604175 **Reported:** 04/24/06 10:46

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
GP-8 (6-8) (B604175-10) Soil	Sampled: 04/12/06 22:23	Received	: 04/13/06	12:00					
Acetone	ND	23.9	ug/kg dry	1	6040347	04/18/06	04/20/06	EPA 8260B	
Benzene	ND	4.78	17	11	11	Ħ	"	U	
Bromodichloromethane	ND	4.78	**	17	li.	"	12	U	
Bromoform	ND	4.78	**	n	"	**	11	O	
Bromomethane	ND	4.78	**	15	D	'n	**	D	
2-Butanone	ND	9.56	Ħ	ts.	D	\$1	†#	ŋ	
Carbon disulfide	ND	4.78	т	**	11	Ħ	**	1)	
Carbon tetrachloride	ND	4.78	17	**	n	**	18	n	
Chlorobenzene	ND	4.78	***	17	17	11	†T	n	
Chlorodibromomethane	ND	4.78	rt .	Ħ	**	Ħ	**	li.	
Chloroethane	ND	4.78	**	11	h	H	**)T	
Chloroform	ND	4.78	11	11	ty	"	**	17	
Chloromethane	ND	4.78	0	*1	**	9	4	19	
1,1-Dichloroethane	12.2	4.78	0	11	H	a	н .	H	
1,2-Dichloroethane	ND	4.78	0	tı	**	n	"	n	
1,1-Dichloroethene	11.0	4.78	n .	н	11	Ħ	"	"	
cis-1,2-Dichloroethene	ND	4.78	U	"	TP	U	**	P	
trans-1,2-Dichloroethene	ND	4.78	11	ш	52	U		n	
1,2-Dichloropropane	ND	4.78	n	п	12	**	o o	n	
1,3-Dichloropropene (cis + trans	nD ND	2.87	1)	o	**	D		**	
Ethylbenzene	ND	4.78	11	,,	**	· ·	0	17	
2-Hexanone	ND	9.56	16	n	**			15	
Methylene chloride	ND	4.78	11	"	**	"		11	
4-Methyl-2-pentanone	ND	9.56	н	"	0	"		н	
Methyl tert-butyl ether	ND	4.78	n	"	**	0		11	
Styrene	ND	4.78	n	0	0	o o	U	**	
1,1,2,2-Tetrachloroethane	ND	4.78	11	D	U	1)		**	
Tetrachloroethene	ND	4.78	**	n	v		n	u	
Toluene	ND	4.78	17	**	tr	"	u	**	
1,1,1-Trichloroethane	202	4.78	11	**	11	17	H	u	
1,1,2-Trichloroethane	ND	4.78	12	**	n	Ħ	.,	u u	
Trichloroethene	ND	4.78	***	tt	**	n	D	u	
Trichlorofluoromethane	ND	4.78	**	77	0)T	n	D	
Vinyl acetate	ND	9.56	†1	11	11	rş	PT	ŋ	
Vinyl chloride	ND	4.78	#1	TP	17	77	IT	n	
Total Xylenes	ND	9.56	н	**	17	11	H	tt	
Surrogate: Dibromofluorometha	ne	114%	55.9-	150	"	н	п	n	
Surrogate: 1,2-Dichloroethane-i		115 %	47.5-		"	**	. "	"	
Surrogate: Toluene-d8	• •	102 %	55.4-		n	"	"	"	
Surrogate: 4-Bromofluorobenze	ne	101 %	40.4-		"	,,	**	,,	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Mostardi Platt Environmental

1380 Busch Parkway Buffalo Grove, Illinois 60089

Project: Sachnoff & Weaver Phase II

Phone: (847) 808-7766

Fax: (847) 808-7772

 1520 Kensington Road Suite 204
 Project Number: M061401
 Lab ID: B604175

 Oak Brook, IL 60523-2139
 Project Manager: Kim Janson
 Reported: 04/24/06 10:46

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	teporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
HS-2 (10-12) (B604175-12) Soil	Sampled: 04/12/06 14:43	Receiv	ed: 04/13/0	06 12:00					
Acetone	ND	22.4	ug/kg dry	1	6040347	04/18/06	04/20/06	EPA 8260B	
Benzene	ND	4.49	71	H	н	n	Į!	H	
Bromodichloromethane	ND	4.49	**	11	11	17		н	
Bromoform	ND	4.49	**	##	Ħ	n	11	12	
Bromomethane	ND	4.49	ij	tt	11	Ħ	11	11	
2-Butanone	ND	8.98	11	*1	**	Ħ	**	**	
Carbon disulfide	ND	4.49	н	u	H	Ħ	**	"	
Carbon tetrachloride	ND	4.49	11	U	н	u	**	u	
Chlorobenzene	ND	4.49	11	n	U	n.	**	11	
Chlorodibromomethane	ND	4.49	n	Ħ	n	11	U	H	
Chloroethane	ND	4.49	H	11	n	н	n	**	
Chloroform	ND	4.49	0	**	**	Ħ	,,	11	
Chloromethane	ND	4.49		a	11	11	Ħ	11	
1,1-Dichloroethane	ND	4.49	в	0	Ħ	11	tt	u	
1,2-Dichloroethane	ND	4.49	н	U	и	0	**		
1,1-Dichloroethene	ND	4.49	**	н	U	n	U	n	
cis-1,2-Dichloroethene	ND	4.49	**	**	0	19	n	n	
trans-1,2-Dichloroethene	ND	4.49		**	н	H	n	n	
1,2-Dichloropropane	ND	4.49	n .	**	н	17	17	**	
1,3-Dichloropropene (cis + trans)	ND	2.69	n	**	**	11	**	**	
Ethylbenzene	ND	4.49	87	U	tt	e.	**	11	
2-Hexanone	ND	8.98	11	"	n	ti.	n	υ	
Methylene chloride	ND	4.49	12	17	n n	11	D	**	
4-Methyl-2-pentanone	ND	8.98	u	11	17	**	0	**	
Methyl tert-butyl ether	ND	4.49	**	**	n	17	b y	rı	
Styrene	ND	4.49	b	11	Ħ	17	Ħ	**	
I, I, 2, 2-Tetrachloroethane	ND	4.49	It	0	Ħ	н	Ħ	u .	
Tetrachloroethene	ND	4.49	***	0	11		11	U	
Toluene	ND	4.49	**	11	11	"	**	11	
1,1,1-Trichloroethane	ND	4.49	**	**	n	l)		n	
1,1,2-Trichloroethane	ND	4.49	u	**	н	**		Ħ	
Trichloroethene	ND	4.49	ıı	**	**	11	,,	**	
Trichlorofluoromethane	ND	4.49	11	н	**	"	**	11	
Vinyl acetate	ND	8.98	11		*1	(1	11	0	
Vinyl acciate Vinyl chloride	ND ND	4.49	11	11		U	*1	U	
Fotal Xylenes	ND ND	8.98	**	H	"	"	"	n	
			** 0	150	"	" "		b	
Surrogate: Dibromofluoromethane		108 %	<i>55.9</i>						
Surrogate: 1,2-Dichloroethane-d4		115%	47.5		"	rı .	. "	,,	
Surrogate: Toluene-d8		102 %	55.4-		"	"	"	,,	
Surrogate: 4-Bromofluorobenzene		99.8 %	40.4-	137	"	"	"	"	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604175 **Reported:** 04/24/06 10:46

Percent Solids

TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
HS-1 (4-6) (B604175-02) Soil	Sampled: 04/12/06 09:43	Received:	04/13/0	6 12:00					
% Solids	85.9	0.200	%	1	6040286	04/14/06	04/14/06	EPA 5035 7.5	
GP-7 (0-2) (B604175-07) Soil	Sampled: 04/12/06 20:33	Received:	04/13/0	6 12:00					
% Solids	85.6	0.200	%	1	6040286	04/14/06	04/14/06	EPA 5035 7.5	
GP-8 (0-2) (B604175-09) Soil	Sampled: 04/12/06 22:11	Received:	04/13/0	6 12:00					
% Solids	88.6	0.200	%	1	6040331	04/17/06	04/18/06	EPA 5035 7.5	
GP-8 (6-8) (B604175-10) Soil	Sampled: 04/12/06 22:23	Received:	04/13/0	6 12:00					
% Solids	85.5	0.200	%	1	6040286	04/14/06	04/14/06	EPA 5035 7.5	
HS-2 (10-12) (B604175-12) So	il Sampled: 04/12/06 14:-	43 Receive	d: 04/1.	3/06 12:00					
% Solids	89.1	0.200	%	l	6040286	04/14/06	04/14/06	EPA 5035 7.5	

TestAmerica Analytical - Buffalo Grove

Approved by:

Andy Johnson

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

Analyte

Project: Sachnoff & Weaver Phase II

Spike

Level

Source

Result

Project Number: M061401 Project Manager: Kim Janson

Reporting

Result

Limit

Lab ID: B604175 **Reported:** 04/24/06 10:46

RPD

Limit

Notes

%REC

Limits

RPD

%REC

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Units

Blank (6040347-BLK1)				Prepared & Analyzed: 04/18/06
Acetone	ND	25.0	ug/kg wet	
Benzene	ND	5.00	n	
Bromodichloromethane	ND	5.00	п	
Bromoform	ND	5.00	n	
Bromomethane	ND	5.00	ţi.	
2-Butanone	ND	10.0	*1	
Carbon disulfide	ND	5.00	**	
Carbon tetrachloride	ND	5.00	**	
Chlorobenzene	ND	5.00	lr.	
Chlorodibromomethane	ND	5.00	***	
Chloroethane	ND	5.00	**	
Chloroform	ND	5.00	11	
Chloromethane	ND	5.00	31	
1,1-Dichloroethane	ND	5.00	11	
1,2-Dichloroethane	ND	5.00	h	
1,1-Dichloroethene	ND	5.00	FF	
cis-1,2-Dichloroethene	ND	5.00	11	
trans-1,2-Dichloroethene	ND	5.00		
1,2-Dichloropropane	ND	5.00	**	
1,3-Dichloropropene (cis + trans)	ND	3.00	†1	
Ethylbenzene	ND	5.00	11	
2-Hexanone	ND	10.0	17	

5.00

10.0

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

5.00

10.0

5.00

ND

ND ND

ND

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Methylene chloride

4-Methyl-2-pentanone

Methyl tert-butyl ether

Tetrachloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl acetate

Vinyl chloride

1,1,2,2-Tetrachloroethane

Styrene

Toluene

Andy Jahnson

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604175 **Reported:** 04/24/06 10:46

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
<u> </u>										

Blank (6040347-BLK1)		Prepared & Analyzed: 04/18/06								
Total Xylenes	ND	10.0	ug/kg wet							
Surrogate: Dibromofluoromethane	49.5		**	50.0	99.0	55.9-150				
Surrogate: 1,2-Dichloroethane-d4	48.5		**	50.0	97.0	47.5-150				
Surrogate: Toluene-d8	50.7		"	50.0	101	<i>55.4-145</i>				
Surrogate: 4-Bromofluorobenzene	47.5		"	50,0	95.0	40.4-137				
LCS (6040347-BS1)				Prepared: 04/	18/06 Analyzed	1: 04/19/06				
Acetone	129	25.0	ug/kg wet	100	129	10-150				
Benzene	47.3	5.00	U	50.0	94.6	54.8-130				
Bromodichloromethane	50.5	5.00	U	50.0	101	55.7-137				
Bromoform	48.3	5.00	0	50.0	96.6	48.6-150				
Bromomethane	49.1	5.00	**	50.0	98.2	10-150				
2-Butanone	123	10.0	"	100	123	10-150				
Carbon disulfide	96.5	5.00	**	100	96.5	10-150				
Carbon tetrachloride	44.5	5.00	н	50.0	89.0	43,4-141				
Chlorobenzene	46.5	5.00	**	50.0	93.0	56.2-127				
Chlorodibromomethane	49.7	5.00	н	50.0	99,4	54.1-142				
Chloroethane	55.4	5.00	н	50.0	111	10-150				
Chloroform	49.0	5.00	**	50.0	98.0	53.7-135				
Chloromethane	51.5	5.00	11	50.0	103	12.4-150				
1,1-Dichloroethane	48.0	5.00	11	50.0	96.0	47.4-139				
1,2-Dichloroethane	49.1	5.00	n	50.0	98.2	54.6-140				
1,1-Dichloroethene	48.6	5.00	17	50.0	97.2	35.5-135				
cis-1,2-Dichloroethene	48.4	5.00	п	50.0	96.8	52.5-136				
trans-1,2-Dichloroethene	48.3	5.00	"	50.0	96.6	47.8-133				
1,2-Dichloropropane	45.5	5.00	n	50.0	91.0	68.3-124				
1,3-Dichloropropene (cis + trans)	96.2	3.00	n	100	96.2	60.9-140				
Ethylbenzene	45.8	5.00	n	50.0	91.6	50.7-127				
2-Hexanone	132	0.01	п	100	132	10-150				
Methylene chloride	50.2	5.00	0	50.0	100	25.4-150				
4-Methyl-2-pentanone	131	10.0	0	100	131	10-150				
Methyl tert-butyl ether	49.9	5.00	ø	50.0	99.8	47.3-150				
Styrene	45.6	5.00	п	50.0	91.2	48.3-127				
1,1,2,2-Tetrachloroethane	55.3	5.00	**	50.0	111	30.4-150				
Tetrachloroethene	45.5	5.00	11	50.0	91.0	46.7-131				
Toluene	46.3	5.00	11	50.0	92.6	53.6-127				

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson, Project Manager

Page 10 of 19

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604175 **Reported:** 04/24/06 10:46

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Prepared: 04/18/06 Analyzed: 04/18/06 Analyze	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Batch 6040347 - EPA 5035B [P/T]										
1,1,1-Trichloroethane	LCS (6040347-BS1)				Prepared:	04/18/06	Analyzed	1: 04/19/06			
1,1,2-Trichlorouthane		48.1	5.00	ug/kg wet	50.0		96.2	49.3-136			
Trickloroentenere	1,1,2-Trichloroethane	53.5	5.00	11	50.0	-	107	57.2-146			
Trechlorouteromerame 84.8 10.0 " 100 84.8 10-150	Trichloroethene	45.7	5.00	ti .	50.0		91.4	55-128			
Vinyl chloride	Trichlorofluoromethane	44.8	5.00	11	50.0		89.6	10-150			
Total Xylenes	Vinyl acetate	84.8	10.0	D	100		84.8	10-150			
Surrogate: Dibromofluoromethane S3.1	Vinyl chloride	47.3	5.00	Ħ	50.0		94.6	28.4-150			
Surrogate: LD-Dickhoroschunded 33.4	Total Xylenes	134	10.0	97	150		89.3	43.1-136			
Surrogate: 1,2-Dichloroethane-d4 53.4	Surrogate: Dibromofluoromethane	53.1		"	50.0		106	55.9-150			
Surrogate: Toluene-d8 51.4 " 50.0 103 55.4-145		53.4		"	50.0		107				
Prepared: 04/18/06 Analyzed: 04/19/06 Analyzed: 04/19/06 Acetone 127 25.0 ug/kg wt 100 127 10-150 1.56 35 Acetone 49.2 5.00 " 50.0 98.4 54.8-130 3.94 35 Acetone 52.0 5.00 " 50.0 104 55.7-137 2.93 31.6 Acetone 52.0 5.00 " 50.0 104 55.7-137 2.93 31.6 Acetone 52.0 5.00 " 50.0 101 48.6-150 4.26 35 Acetone 49.1 5.00 " 50.0 101 48.6-150 4.26 35 Acetone 49.1 5.00 " 50.0 101 48.6-150 4.26 35 Acetone 49.1 5.00 " 50.0 100 132 10-150 0.00 35 Acetone 49.1 5.00 " 50.0 100 48.2 10-150 1.75 35 Acetone 48.7 5.00 " 50.0 92.6 43.4-14 3.96 35 Acetone 48.7 5.00 " 50.0 97.4 56.2-127 4.62 35 Acetone 48.7 5.00 " 50.0 97.4 56.2-127 4.62 35 Acetone 48.7 5.00 " 50.0 103 54.1-14 3.75 34 Acetone 48.6 5.00 " 50.0 103 54.1-14 3.75 34 Acetone 56.5 5.00 " 50.0 103 54.1-14 3.75 34 Acetone 56.5 5.00 " 50.0 103 54.1-14 3.75 34 Acetone 56.5 5.00 " 50.0 103 54.1-14 3.75 34 Acetone 56.5 5.00 " 50.0 103 54.1-14 3.75 34 Acetone 56.5 5.00 " 50.0 103 54.1-14 3.75 34 Acetone 56.5 50.0 " 50.0 103 54.1-14 3.75 34 Acetone 56.5 50.0 " 50.0 103 54.1-14 3.75 34 Acetone 56.5 50.0 " 50.0 103 54.1-14 3.75 34 Acetone 56.5 50.0 " 50.0 103 54.1-14 3.75 34 Acetone 56.5 50.0 " 50.0 103 54.1-14 3.75 34 Acetone 56.5 50.0 " 50.0 103 54.1-14 3.75 34 Acetone 56.5 50.0 " 50.0 103 54.1-14 3.75 34 Acetone 56.5 50.0 " 50.0 100 54.1-14 3.75 34 Acetone 56.5 50.0 " 50.0 100 54.1-14 3.75 35 35 35 35 35 35 35	-	51.4									
New Notes 127 25.0 ug/kg wet 100 127 10-150 1.56 35	Surrogate: 4-Bromofluorobenzene	53.5		**	50.0		107	40.4-137			
Acetone 127 25.0 ug/kg wet 100 127 10-150 1.56 35 Benzene 49.2 5.00 " 50.0 98.4 54.8-130 3.94 35 Bromodichloromethane 52.0 5.00 " 50.0 101 48.6-150 4.26 35 Bromoform 50.4 5.00 " 50.0 101 48.6-150 4.26 35 Bromomethane 49.1 5.00 " 50.0 98.2 10-150 .00 35 2-Butanone 132 10.0 " 100 132 10-150 .706 35 Carbon disulfide 98.2 5.00 " 100 98.2 10-150 1.75 35 Carbon tetrachloride 46.3 5.00 " 50.0 92.6 43.4-141 3.96 35 Chlorodibromomethane 51.6 5.00 " 50.0 97.4 56.2-127 4.62 35 Chlorodethane	LCS Dup (6040347-BSD1)				Prepared	: 04/18/06	Analyze	d: 04/19/06			
Benzene Span Span		127	25.0	ug/kg wet	100		127	10-150	1.56	35	
Bromoform 50.4 5.00 " 50.0 101 48.6-150 4.26 35 Bromoform 50.4 5.00 " 50.0 98.2 10-150 0.00 35 Bromomethane 132 10.0 " 100 132 10-150 7.06 35 Carbon disulfide 98.2 5.00 " 100 98.2 10-150 1.75 35 Carbon tetrachloride 46.3 5.00 " 50.0 92.6 43.4-141 3.96 35 Chlorobenzene 48.7 5.00 " 50.0 97.4 56.2-127 4.62 35 Chlorodibromethane 51.6 5.00 " 50.0 103 54.1-42 3.75 34 Chlorofethane 50.5 5.00 " 50.0 113 10-150 1.97 35 Chloromethane 51.2 5.00 " 50.0 101 53.7-135 2.82 32.2 Chlorom	Benzene	49.2	5.00	(t	50.0		98.4	54.8-130	3.94	35	
Bromotorm 30.4 5.00 " 50.0 98.2 10-150 0.00 35 2-Butanone 132 10.0 " 100 132 10-150 7.06 35 Carbon disulfide 98.2 5.00 " 100 98.2 10-150 1.75 35 Carbon tetrachloride 46.3 5.00 " 50.0 92.6 43.4-141 3.96 35 Chlorodebracene 48.7 5.00 " 50.0 97.4 56.2-127 4.62 35 Chlorodebracene 51.6 5.00 " 50.0 103 54.1-142 3.75 34 Chlorodethane 51.6 5.00 " 50.0 103 54.1-142 3.75 34 Chloroform 50.4 5.00 " 50.0 101 53.7-135 2.82 32.2 Chloromethane 51.2 5.00 " 50.0 101 53.7-135 2.82 32.2 Chloromethane 50.0 50.0 97.6 47.4-139 1.65 35	Bromodichloromethane	52.0	5.00	11	50.0		104	55.7-137	2.93	31.6	
2-Butanone 2-Butanone 132 10.0 " 100 132 10-150 7.06 35 Carbon disulfide 98.2 5.00 " 100 98.2 10-150 1.75 35 Carbon disulfide 46.3 5.00 " 50.0 92.6 43.4-141 3.96 35 Chlorobenzene 48.7 5.00 " 50.0 97.4 56.2-127 4.62 35 Chlorodibromomethane 51.6 5.00 " 50.0 " 50.0 103 54.1-142 3.75 34 Chlorodibromomethane 56.5 5.00 " 50.0 " 50.0 113 10-150 1.97 35 Chlorodibromomethane 56.5 5.00 " 50.0 " 50.0 113 10-150 1.97 35 Chlorodima 50.4 50.0 " 50.0 101 53.7-135 2.82 32.2 Chloromethane 51.2 5.00 " 50.0 " 50.0 102 12.4-150 0.584 35 1,1-Dichloroethane 48.8 5.00 " 50.0 " 50.0 97.6 47.4-139 1.65 35 1,2-Dichloroethane 48.6 5.00 " 50.0 " 50.0 97.2 35.5-135 0.00 35 cis-1,2-Dichloroethane 50.4 50.0 " 50.0 " 50.0 97.2 35.5-135 0.00 35 cis-1,2-Dichloroethane 50.4 50.0 " 50.0 " 50.0 101 52.5-136 4.05 32.9 trans-1,2-Dichloroethane 47.5 5.00 " 50.0 " 50.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 9		50.4	5.00	H	50.0		101	48.6-150	4.26	35	
2-Butanone 132 132 100 98.2 10-150 1.75 35 Carbon disulfide 98.2 5.00 " 50.0 92.6 43.4-141 3.96 35 Chlorobenzene 48.7 5.00 " 50.0 97.4 56.2-127 4.62 35 Chlorodibromomethane 51.6 5.00 " 50.0 103 54.1-142 3.75 34 Chloroethane 56.5 5.00 " 50.0 113 10-150 1.97 35 Chloroethane 50.4 5.00 " 50.0 101 53.7-135 2.82 32.2 Chloroethane 51.2 5.00 " 50.0 101 53.7-135 2.82 32.2 Chloroethane 48.8 5.00 " 50.0 102 12.4-150 0.584 35 1,1-Dichloroethane 48.6 5.00 " 50.0 97.6 47.4-139 1.65 35 1,2-Dichloroetha	Bromomethane	49.1	5.00	1)	50.0		98.2	10-150	0.00	35	
Carbon disulfide 98.2 5.00 " 100 98.2 10-150 1.75 35 Carbon tetrachloride 46.3 5.00 " 50.0 92.6 43.4-141 3.96 35 Chlorodibromomethane 48.7 5.00 " 50.0 97.4 56.2-127 4.62 35 Chlorodibromomethane 51.6 5.00 " 50.0 103 54.1-142 3.75 34 Chlorodibromomethane 56.5 5.00 " 50.0 113 10-150 1.97 35 Chloroform 50.4 5.00 " 50.0 101 53.7-135 2.82 32.2 Chloromethane 51.2 5.00 " 50.0 101 53.7-135 2.82 32.2 Chloromethane 48.8 5.00 " 50.0 102 12.4-150 0.584 35 1,1-Dichloroethane 48.8 5.00 " 50.0 97.6 47.4-139 1.65 35 1,1-Dichloroethane 48.6 5.00 " 50.0 97.2	2-Butanone	132	0.01	v	100		132	10-150	7.06	35	
Chlorobenzene 48.7 5.00 " 50.0 97.4 56.2-127 4.62 35 Chlorobenzene 51.6 5.00 " 50.0 103 54.1-142 3.75 34 Chloroethane 56.5 5.00 " 50.0 113 10-150 1.97 35 Chloroform 50.4 5.00 " 50.0 101 53.7-135 2.82 32.2 Chloromethane 51.2 5.00 " 50.0 102 12.4-150 0.584 35 1,1-Dichloroethane 50.0 50.0 " 50.0 102 12.4-150 0.584 35 1,2-Dichloroethane 50.0 50.0 " 50.0 100 54.6-140 1.82 31.5 1,1-Dichloroethane 48.6 5.00 " 50.0 97.6 47.4-139 1.65 35 1,1-Dichloroethane 48.6 5.00 " 50.0 100 54.6-140 1.82 31.5 1,1-Dichloroethane 50.4 5.00 " 50.0 97.2 35.5-135 0.00 35 cis-1,2-Dichloroethane 50.4 5.00 " 50.0 101 52.5-136 4.05 32.9 trans-1,2-Dichloroethane 50.4 5.00 " 50.0 101 47.8-133 4.26 35 1,2-Dichloropane 47.5 5.00 " 50.0 95.0 68.3-124 4.30 27.4 1,3-Dichloropane (cis + trans) 98.6 3.00 " 50.0 96.4 50.7-127 5.11 35 Ethylbenzene 48.2 5.00 " 50.0 " 50.0 96.4 50.7-127 5.11 35 2.00 100 136 10-150 2.99 35	Carbon disulfide	98.2	5.00	**	100		98.2	10-150	1.75	35	
Chlorobenzene 48.7 5.00 " 50.0 97.4 56.2-127 4.62 35 Chlorodibromomethane 51.6 5.00 " 50.0 103 54.1-142 3.75 34 Chloroethane 56.5 5.00 " 50.0 113 10-150 1.97 35 Chloroform 50.4 5.00 " 50.0 101 53.7-135 2.82 32.2 Chloromethane 51.2 5.00 " 50.0 102 12.4-150 0.584 35 1,1-Dichloroethane 48.8 5.00 " 50.0 97.6 47.4-139 1.65 35 1,2-Dichloroethane 48.6 5.00 " 50.0 97.2 35.5-135 0.00 35 1,1-Dichloroethene 48.6 5.00 " 50.0 97.2 35.5-135 0.00 35 cis-1,2-Dichloroethene 50.4 5.00 " 50.0 101 47.8-133 4.26 35 1,2-Dichloropropane 47.5 5.00 " 50.0 95.0 <	-	46.3	5.00	17	50.0		92.6	43.4-141	3.96	35	
Chlorodibromomentane 56.5 5.00 50.0 113 10-150 1.97 35 Chloroform 50.4 5.00 50.0 101 53.7-135 2.82 32.2 Chloromethane 51.2 5.00 50.0 102 12.4-150 0.584 35 1,1-Dichloroethane 48.8 5.00 50.0 97.6 47.4-139 1.65 35 1,2-Dichloroethane 50.0 5.00 50.0 100 54.6-140 1.82 31.5 1,1-Dichloroethane 48.6 5.00 50.0 97.2 35.5-135 0.00 35 cis-1,2-Dichloroethene 50.4 5.00 50.0 101 52.5-136 4.05 32.9 trans-1,2-Dichloroethene 50.4 5.00 50.0 101 47.8-133 4.26 35 1,2-Dichloropropane 47.5 5.00 50.0 95.0 68.3-124 4.30 27.4 1,3-Dichloropropane 48.2 5.00 50.0 96.4 <t< td=""><td></td><td>48.7</td><td>5.00</td><td>0</td><td>50.0</td><td></td><td>97.4</td><td>56.2-127</td><td>4.62</td><td>35</td><td></td></t<>		48.7	5.00	0	50.0		97.4	56.2-127	4.62	35	
Chlorofethane 50.3 5.00 50.0 101 53.7-135 2.82 32.2 Chloromethane 51.2 5.00 50.0 102 12.4-150 0.584 35 1,1-Dichloroethane 48.8 5.00 50.0 97.6 47.4-139 1.65 35 1,2-Dichloroethane 50.0 5.00 50.0 100 54.6-140 1.82 31.5 1,1-Dichloroethane 48.6 5.00 50.0 97.2 35.5-135 0.00 35 1,1-Dichloroethene 50.4 5.00 50.0 101 52.5-136 4.05 32.9 trans-1,2-Dichloroethene 50.4 5.00 50.0 101 47.8-133 4.26 35 1,2-Dichloropropane 47.5 5.00 50.0 95.0 68.3-124 4.30 27.4 1,3-Dichloropropane (cis + trans) 98.6 3.00 100 98.6 60.9-140 2.46 35 Ethylbenzene 136 10.0 100 136	Chlorodibromomethane	51.6	5.00	+1	50.0		103	54.1-142	3.75	34	
Chloroform 50.4 5.00 50.0 101 53.7-135 2.82 32.2 Chloromethane 51.2 5.00 50.0 102 12.4-150 0.584 35 1,1-Dichloroethane 48.8 5.00 50.0 97.6 47.4-139 1.65 35 1,2-Dichloroethane 50.0 5.00 50.0 100 54.6-140 1.82 31.5 1,1-Dichloroethane 48.6 5.00 50.0 97.2 35.5-135 0.00 35 cis-1,2-Dichloroethane 50.4 5.00 50.0 101 52.5-136 4.05 32.9 trans-1,2-Dichloroethane 50.4 5.00 50.0 101 47.8-133 4.26 35 1,2-Dichloropropane 47.5 5.00 50.0 95.0 68.3-124 4.30 27.4 1,3-Dichloropropane (cis + trans) 98.6 3.00 100 98.6 60.9-140 2.46 35 Ethylbenzene 136 10.0 100 136	Chloroethane	56.5	5.00	H	50.0		113	10-150	1.97	35	
Chloromethane 51.2 5.00 50.0 102 12.4-150 0.584 35 1,1-Dichloroethane 48.8 5.00 50.0 50.0 97.6 47.4-139 1.65 35 1,2-Dichloroethane 50.0 5.00 50.0 100 54.6-140 1.82 31.5 1,1-Dichloroethane 48.6 5.00 50.0 97.2 35.5-135 0.00 35 cis-1,2-Dichloroethane 50.4 5.00 50.0 101 52.5-136 4.05 32.9 trans-1,2-Dichloroethane 50.4 5.00 50.0 101 47.8-133 4.26 35 1,2-Dichloropropane 47.5 5.00 50.0 95.0 68.3-124 4.30 27.4 1,3-Dichloropropane (cis + trans) 98.6 3.00 100 98.6 60.9-140 2.46 35 Ethylbenzene 48.2 5.00 50.0 96.4 50.7-127 5.11 35 2-Hexanone 136 10.0 100 136 10-150 2.99 35		50.4	5.00	0	50.0		101	53.7-135	2.82	32.2	
1,1-Dichloroethane 48.8 5.00 50.0 97.6 47.4-139 1.65 35 1,2-Dichloroethane 50.0 5.00 50.0 100 54.6-140 1.82 31.5 1,1-Dichloroethane 48.6 5.00 50.0 97.2 35.5-135 0.00 35 cis-1,2-Dichloroethane 50.4 5.00 50.0 101 52.5-136 4.05 32.9 trans-1,2-Dichloroethane 50.4 5.00 50.0 101 47.8-133 4.26 35 1,2-Dichloropropane 47.5 5.00 50.0 95.0 68.3-124 4.30 27.4 1,3-Dichloropropane (cis + trans) 98.6 3.00 100 98.6 60.9-140 2.46 35 Ethylbenzene 48.2 5.00 50.0 96.4 50.7-127 5.11 35 2-Hexanone 136 10.0 100 136 10-150 2.99 35		51.2	5.00	**	50.0		102	12.4-150	0.584	35	
1,2-Dichloroethane 50.0 50.0 50.0 100 54.6-140 1.82 31.5 1,1-Dichloroethane 48.6 5.00 50.0 97.2 35.5-135 0.00 35 cis-1,2-Dichloroethane 50.4 5.00 50.0 101 52.5-136 4.05 32.9 trans-1,2-Dichloroethane 50.4 5.00 50.0 101 47.8-133 4.26 35 1,2-Dichloropropane 47.5 5.00 50.0 95.0 68.3-124 4.30 27.4 1,3-Dichloropropane (cis + trans) 98.6 3.00 100 98.6 60.9-140 2.46 35 Ethylbenzene 48.2 5.00 50.0 96.4 50.7-127 5.11 35 2-Hexanone 136 10.0 100 136 10-150 2.99 35	•	48.8	5.00	н	50.0		97.6	47.4-139	1.65	35	
1,1-Dichloroethene 48.6 5.00 50.0 97.2 35.5-135 0.00 35 cis-1,2-Dichloroethene 50.4 5.00 50.0 101 52.5-136 4.05 32.9 trans-1,2-Dichloroethene 50.4 5.00 50.0 101 47.8-133 4.26 35 1,2-Dichloropropane 47.5 5.00 50.0 95.0 68.3-124 4.30 27.4 1,3-Dichloropropane (cis + trans) 98.6 3.00 100 98.6 60.9-140 2.46 35 Ethylbenzene 48.2 5.00 50.0 96.4 50.7-127 5.11 35 2-Hexanone 136 10.0 100 136 10-150 2.99 35	, , , , , , , , , , , , , , , , , , ,	50.0	5.00	v	50.0		100	54.6-140	1.82	31.5	
cis-1,2-Dichloroethene 50.4 5.00 50.0 101 52.5-136 4.05 32.9 trans-1,2-Dichloroethene 50.4 5.00 50.0 101 47.8-133 4.26 35 1,2-Dichloropropane 47.5 5.00 50.0 95.0 68.3-124 4.30 27.4 1,3-Dichloropropane (cis + trans) 98.6 3.00 100 98.6 60.9-140 2.46 35 Ethylbenzene 48.2 5.00 50.0 96.4 50.7-127 5.11 35 2-Hexanone 136 10.0 100 136 10-150 2.99 35	,	48.6	5.00	"	50.0		97.2	35.5-135	0.00	35	
trans-1,2-Dichloroethene 50.4 5.00 50.0 101 47.8-133 4.26 35 1,2-Dichloropropane 47.5 5.00 50.0 95.0 68.3-124 4.30 27.4 1,3-Dichloropropene (cis + trans) 98.6 3.00 100 98.6 60.9-140 2.46 35 Ethylbenzene 48.2 5.00 50.0 96.4 50.7-127 5.11 35 2-Hexanone 136 10.0 100 136 10-150 2.99 35	'	50.4	5.00	*	50.0		101	52.5-136	4.05	32.9	
1,2-Dichloropropane 47.5 5.00 50.0 95.0 68.3-124 4.30 27.4 1,3-Dichloropropene (cis + trans) 98.6 3.00 100 98.6 60.9-140 2.46 35 Ethylbenzene 48.2 5.00 50.0 96.4 50.7-127 5.11 35 2-Hexanone 136 10.0 100 136 10-150 2.99 35		50.4	5.00	**	50.0		101	47.8-133	4.26	35	
1,3-Dichloropropene (cis + trans) 98.6 3.00 " 100 98.6 60.9-140 2.46 35 Ethylbenzene 48.2 5.00 " 50.0 96.4 50.7-127 5.11 35 2-Hexanone 136 10.0 " 100 136 10-150 2.99 35		47.5	5.00	u	50.0		95.0	68.3-124	4.30	27.4	
Ethylbenzene 48.2 5.00 " 50.0 96.4 50.7-127 5.11 35 2-Hexanone 136 10.0 " 100 136 10-150 2.99 35		98.6	3.00	п	100		98.6	60.9-140	2.46	35	
2-Hexanone 136 10.0 " 100 136 10-150 2.99 35	•	48.2	5.00	"	50.0		96.4	50.7-127	5.11	35	
500 " 500 102 25.4.150 1.78 35	•		10.0		100		136	10-150	2.99	35	
	Methylene chloride	51.1	5.00	, "	50.0		102	25.4-150	1.78	35	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Andy Johnson, Project Manager

Page 11 of 19

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604175
Reported: 04/24/06 10:46

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040347 - EPA 5035B [P/T]										
LCS Dup (6040347-BSD1)				Prepared:	04/18/06	Analyzed	1: 04/19/06			
4-Methyl-2-pentanone	134	10.0	ug/kg wet	100		134	10-150	2.26	35	
Methyl tert-butyl ether	50.7	5.00	11	50.0		101	47.3-150	1.59	35	
Styrene	47.0	5.00	Ħ	50.0		94.0	48.3-127	3.02	35	
1,1,2,2-Tetrachloroethane	56.0	5.00	**	50.0		112	30.4-150	1.26	35	
Tetrachloroethene	49.1	5.00	**	50.0		98.2	46.7-131	7.61	35	
Toluene	48.5	5.00	17	50.0		97.0	53.6-127	4.64	35	
1,1,1-Trichloroethane	49.0	5.00	17	50.0		98.0	49.3-136	1.85	35	
1,1,2-Trichloroethane	54.2	5.00	11	50.0		108	57.2-146	1.30	30.2	
Trichloroethene	48.0	5.00	17	50.0		96.0	55-128	4.91	35	
Trichlorofluoromethane	46.9	5.00	17	50.0		93.8	10-150	4.58	35	
Vinyl acetate	68.7	10.0	"	100		68.7	10-150	21.0	35	
Vinyl chloride	47.8	5.00	U	50.0		95.6	28.4-150	1.05	35	
Total Xylenes	143	10.0	u	150		95.3	43.1-136	6.50	35	
Surrogate: Dibromofluoromethane	52.5		ft.	50.0		105	55.9-150			***************************************
Surrogate: 1,2-Dichloroethane-d4	52.0		"	50.0		104	47.5-150			
Surrogate: Tolucne-d8	51.3			50.0		103	55.4-145			
Surrogate: 4-Bromofluorobenzene	53.4		n	50.0		107	40.4-137			
Batch 6040385 - EPA 5030B (P/T)		************************								
Blank (6040385-BLK1)				Prepared:	04/19/06	Analyzed	1: 04/20/06			
Acetone	ND	10.0	ug/l							
Benzene	ND	2.00	71							
Bromodichloromethane	ND	2.00	н							
Bromoform	ND	1.00	#1							
Bromomethane	ND	2.00	м							
2-Butanone	ND	0.01	15							
Carbon disulfide	ND	2.00	n							
Carbon tetrachloride	ND	2.00	89							
Chlorobenzene	ND	2.00	p							
			**							
Chlorodibromomethane	ND	2.00	.,							
Chlorodibromomethane Chloroethane		2.00 2.00	Jt.							
	ND									
Chloroethane	ND ND	2.00	Ft .							
Chloroethane Chloroform	ND ND ND	2.00 2.00	FT N							

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Andy Johnson, Project Manager

Page 12 of 19

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Spike

Source

Project Number: M061401 Project Manager: Kim Janson

Reporting

Lab ID: B604175

%REC

Reported: 04/24/06 10:46

RPD

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Keporung Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6040385 - EPA 5030B (P/T)										
Blank (6040385-BLK1)				Prepared:	04/19/06	Analyzed	: 04/20/06			
I,I-Dichloroethene	ND	2.00	ug/l						1	
eis-1,2-Dichloroethene	ND	2.00	**							
trans-1,2-Dichloroethene	ND	2.00	a							
1,2-Dichloropropane	ND	2.00	**							
1,3-Dichloropropene (cis + trans)	ND	2.00	11							
Ethylbenzene	ND	2.00	и							
2-Hexanone	ND	10.0	U							
Methylene chloride	ND	2.00	"							
4-Methyl-2-pentanone	ND	10.0	ur.							
Methyl tert-butyl other	ND	2.00	16							
Styrene	ND	2.00	11							
1,1,2,2-Tetrachloroethane	ND	2.00	n							
Tetrachloroethene	ND	2.00	n							
Foluene	ND	2.00	н							
,1,1-Trichloroethane	ND	2.00	11							
,1,2-Trichloroethane	ND	2.00	\$1							
Frichloroethene	ND	2.00	11							
Frichlorofluoromethane	ND	2.00	11							
/inyl acetate	ND	2.00	n							
Vinyl chloride	ND	2.00	U							
Total Xylenes	ND	4.00	U							
Surrogate: Dibromofluoromethane	48.2		"	50.0		96.4	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	49.9		(r	50.0		99.8	61.2-141			
Surrogate: Toluene-d8	50.8		**	50.0		102	75.8-118			
Surrogate: 4-Bromofluorobenzene	49.1		**	50.0		98.2	68.9-123			
.CS (6040385-BS1)				Prepared:	04/19/06	Analyzed	: 04/21/06			
Acetone	114	10.0	ug/l	100		114	10-150			
Benzene	49.9	2.00	71	50.0		99.8	66-127			
Bromodichloromethane	53.3	2.00	**	50.0		107	70.2-136			
Bromoform	50.7	1.00	"	50.0		101	44.6-150			
Bromomethane	65.4	2.00		50.0		131	10-150			
2-Butanone	100	10.0	n.	100		100	10-150			
Carbon disulfide	104	2.00		100		104	10-150			
Carbon tetrachloride	42.1	2.00);	50.0		84.2	56.1-137			
Chlorobenzene	49.8	2.00	11	50.0		99.6	75.3~123			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

May Jahnon

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604175 Reported: 04/24/06 10:46

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Авагуе	resun	L-11711	Ciito	1.0 1 01	1103011	70100	2,,,,,,		2	
Batch 6040385 - EPA 5030B (P/T)										
LCS (6040385-BS1)				Prepared:	04/19/06	Analyzed	1: 04/21/06			
Chlorodibromomethane	54.3	2.00	ug/l	50.0		109	66.5-140			
Chloroethane	66.8	2.00	17	50.0		134	30.4-150			
Chloroform	55.1	2.00	fi	50.0		110	64.5-135			
Chloromethane	54.0	2.00	##	50.0		108	22-150			
1,1-Dichloroethane	56.7	2.00	**	50.0		113	57.6-140			
1,2-Dichloroethane	52.2	2.00	H	50.0		104	62-142			
1,1-Dichloroethene	51.1	2.00	17	50.0		102	49.4-128			
cis-1,2-Dichloroethene	54.4	2.00	D	50.0		109	69.2-134			
trans-1,2-Dichloroethene	53.0	2.00	n	50.0		106	57.6-135			
1.2-Dichloropropane	51.7	2.00	"	50.0		103	67.5-132			
1,3-Dichloropropene (cis + trans)	85.4	2.00	**	100		85.4	66.2-137			
Ethylbenzene	48.4	2.00	**	50.0		96.8	69.5-129			
2-Hexanone	50.0	10.0	**	001		50.0	10-150			
Methylene chloride	53.3	2.00	31	50.0		107	43.2-150			
4-Methyl-2-pentanone	106	10.0	**	100		106	27.2-150			
Methyl tert-butyl ether	56.4	2.00	n	50.0		113	66.8-141			
Styrene	50.9	2.00	IT	50.0		102	65.6-134			
1,1,2,2-Tetrachloroethane	38.9	2.00	n	50.0		77.8	56-146			
Tetrachloroethene	47.6	2.00	"	50.0		95.2	61.9-133			
Toluene	48.0	2.00	v	50.0		96.0	70.5-123			
1,1,1-Trichloroethane	50.4	2.00	и	50.0		101	60.1-137			
1,1,2-Trichloroethane	54.0	2.00		50.0		108	77-132			
Trichloroethene	56.2	2.00	"	50.0		112	65.3-132			
Trichlorofluoromethane	57.3	2.00	Ħ	50.0		115	47.2-150			
Vinyl acetate	37.5	2.00	11	100		37.5	10-150			
Vinyl chloride	52.7	2.00	**	50.0		105	39.1-150			
Total Xylenes	152	4.00	**	150		101	64.4-131			
Surrogate: Dibromofluoromethane	54.3		řI	50.0	***************************************	109	69.8-133			***************************************
Surrogate: 1,2-Dichloroethane-d4	50.4		"	50.0		101	61.2-141			
Surrogate: Toluene-d8	51.4		"	50.0		103	75.8-118			

50.0

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

68.9-123

Reviewed & Approved by:

Surrogate: 4-Bromofluorobenzene

Andy Johnson

Andy Johnson, Project Manager

50.4

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604175

Reported: 04/24/06 10:46

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

	Dent	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Resuit	LHill	Omis	LLYEI	(VESUI)	781CCC	£.111113	1G U	L-AC5515	7,010
Batch 6040385 - EPA 5030B (P/T)										
Matrix Spike (6040385-MS1)	So	urce: B60419					***************************************			
Acctone	108	10.0	ug/l	100	ND	108	10-150			
Benzene	50.4	2.00	**	50.0	ND	101	54.8-135			
Bromodichloromethane	51.5	2.00	**	50.0	ND	103	63-141			
Bromoform	45.6	1.00	**	50.0	ND	91.2	39.2-150			
Bromomethane	76.7	2.00	n	50.0	ND	153	10-150			H
2-Butanone	105	10.0	"	100	ND	105	10-150			
Carbon disulfide	108	2.00	II .	100	ND	108	10-150			
Carbon tetrachloride	43.2	2.00	U	50.0	ND	86.4	50.4-138			
Chlorobenzene	49.2	2.00	n .	50.0	ND	98.4	69.5-127			
Chlorodibromomethane	50.3	2.00	11	50.0	ND	101	61.9-141			
Chloroethane	52.2	2.00	**	50.0	ND	104	18.3-150			
Chloroform	52.8	2.00	11	50.0	ND	106	54.1-142			
Chloromethane	53.7	2.00	***	50.0	2.62	102	19,1-150			
1,1-Dichloroethane	54.8	2.00	\$T	50.0	ND	110	51.9-141			
1,2-Dichloroethane	50.2	2.00	n	50.0	ND	100	55.5-147			
1,1-Dichloroethene	50.8	2.00	U	50.0	ND	102	36.2-135			
cis-1,2-Dichloroethene	51.4	2.00	U	50.0	ND	103	53.1-146			
trans-1,2-Dichloroethene	55.2	2.00	u	50.0	ND	110	53.7-131			
1,2-Dichloropropane	51.2	2.00	н	50.0	ND	102	60.6-137			
1,3-Dichloropropene (cis + trans)	98.4	2.00	н	100	ND	98.4	16.7-150			
Ethylbenzene	50.6	2.00	н	50.0	ND	101	62.8-133			
2-Hexanone	47.1	10.0	tt	100	ND	47.1	11.6-148			
Methylene chloride	53.2	2.00	n	50.0	ND	106	33.8-150			
4-Methyl-2-pentanone	100	10.0	n	100	ND	100	12.1-150			
Methyl tert-butyl ether	53.1	2.00	n	50.0	ND	106	52.6-150			
Styrene	48.9	2.00	n	50.0	ND	97.8	48.8-144			
1,1,2,2-Tetrachloroethane	49.8	2.00	0	50.0	ND	99.6	56.8-150			
Tetrachloroethene	49.5	2.00	*1	50.0	ND	99.0	50.8-136			
Toluene	48.3	2.00	11	50.0	0.510	95.6	57.9-131			
1,1,1-Trichloroethane	48.7	2.00	11	50.0	2.79	91.8	53.3-137			
1,1,2-Trichloroethane	52.6	2.00	31	50.0	ND	105	63.7-140			
Trichloroethene	48.3	2.00	17	50.0	ND	96.6	47.2-131			
Trichlorofluoromethane	42.9	2.00	1)	50.0	ND	85.8	10.8-150			
Vinyl acetate	128	2.00	17	100	ND	128	10-150			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

13-150

107

Reviewed & Approved by:

Vinyl chloride

Andy Johnson

53.3

2.00

50.0

ND

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604175

Reported: 04/24/06 10:46

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040385 - EPA 5030B (P/T)										
Matrix Spike (6040385-MS1)	So	urce: B604192	2-03RE1	Prepared:	04/19/06	Analyzed	l: 04/23/06			
Total Xylenes	152	4.00	ug/l	150	ND	101	45.9-146			
Surrogate: Dibromofluoromethane	52.7		er	50.0	***************************************	105	69.8-133			ransata
Surrogate: 1,2-Dichloroethane-d4	50.8		**	50.0		102	61.2-141			
Surrogate: Toluene-d8	52.0		**	50.0		104	75.8-118			
Surrogate: 4-Bromofluorobenzenc	51.7		**	50.0		103	68.9-123			
Matrix Spike Dup (6040385-MSD1)	So	urce: B604197	2-03RE1	Prepared:	04/19/06	Analyzed	1: 04/23/06			
Acetone	96.1	0.01	ug/l	100	ND	96.1	10-150	11.7	40	
Benzene	50.4	2.00	o	50.0	ND	101	54.8-135	0.00	31.9	
Bromodichloromethane	50.7	2.00	H	50.0	ND	101	63-141	1.57	28.2	
Bromoform	44.5	1.00	ti	50.0	ND	89.0	39.2-150	2.44	29.3	
Bromomethane	59.2	2.00	**	50.0	ND	118	10-150	25.8	40	
2-Butanone	95.5	10.0	**	100	ND	95.5	10-150	9.48	40	
Carbon disulfide	101	2.00	#	100	ND	101	10-150	6.70	40	
Carbon tetrachloride	42.6	2.00	11	50.0	ND	85.2	50.4-138	1.40	35.1	
Chlorobenzene	48.6	2.00	77	50.0	ND	97.2	69.5-127	1.23	38.4	
Chlorodibromomethane	49.1	2.00	H	50.0	ND	98.2	61.9-141	2.41	29.3	
Chloroethane	50.6	2.00	**	50.0	ND	101	18.3-150	3.11	40	
Chloroform	50.4	2.00	11	50.0	ND	101	54.1-142	4.65	29.1	
Chloromethane	51.7	2.00		50.0	2.62	98.2	19.1-150	3.80	40	
1,1-Dichloroethane	52.2	2.00	tt.	50.0	ND	104	51.9-141	4.86	27.6	
1,2-Dichloroethane	49.9	2.00	U	50.0	ND	99.8	55.5-147	0.599	25.2	
I,1-Dichloroethene	46.6	2.00	U	50.0	ND	93.2	36.2-135	8.62	33.3	
cis-1,2-Dichloroethene	49.1	2.00	11	50.0	ND	98.2	53.1-146	4.58	29.2	
trans-1,2-Dichloroethene	51.0	2.00	¥f	50.0	ND	102	53.7-131	7.91	32	
1,2-Dichloropropane	50.7	2.00	**	50.0	ND	101	60.6-137	0.981	26.8	
1,3-Dichloropropene (cis + trans)	96.8	2.00	*	100	ND	96.8	16.7-150	1.64	40	
Ethylbenzene	49.0	2.00	**	50.0	ND	98.0	62.8-133	3.21	40	
2-Hexanone	46.5	10.0	24	100	ND	46.5	11.6-148	1.28	40	
Methylene chloride	45.3	2.00	н	50.0	ND	90.6	33.8-150	16.0	36.8	
4-Methyl-2-pentanone	98.0	10.0	71	100	ND	98.0	12.1-150	2.02	40	
Methyl tert-butyl ether	50.0	2.00	**	50.0	ND	100	52.6-150	6.01	40	
Styrene	47.8	2.00	"	50.0	ND	95.6	48.8-144	2.28	40	
1,1,2,2-Tetrachloroethane	49.4	2.00	14	50.0	ND	98.8	56.8-150	0.806	25	
Tetrachloroethene	48.1	2.00	**	50.0	ND	96.2	50.8-136	2.87	40	
Toluene	47.1	2.00	n	50.0	0.510	93.2	57.9-131	2.52	38.7	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604175 Reported: 04/24/06 10:46

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

		Reporting	11.2	Spike	Source	0/050	%REC	DDD	RPD	XI
Analyte	Result	Limit	Limit Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6040385 - EPA 5030B (P/T)										
Matrix Spike Dup (6040385-MSD1)	Sou	rce: B60419	2-03RE1	Prepared:	04/19/06	Analyzed	1: 04/23/06			
1,1,1-Trichloroethane	47.0	2.00	ug/l	50.0	2.79	88.4	53.3-137	3.55	38.2	
1,1,2-Trichloroethane	51.8	2.00	**	50.0	ND	104	63.7-140	1.53	27.4	
Trichloroethene	47.9	2.00	74	50.0	ND	95.8	47.2-131	0.832	40	
Trichlorofluoromethane	38.3	2.00	14	50.0	ND	76.6	10.8-150	11.3	40	
Vinyl acetate	128	2.00	11	100	ND	128	10-150	0.00	40	
Vinyl chloride	48.5	2.00	17	50.0	ND	97.0	13-150	9.43	40	
Total Xylenes	144	4.00	11	150	ND	96.0	45.9-146	5.41	40	
Surrogate: Dibromofluoromethane	51.1		"	50.0	***************************************	102	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	50.5		n	50.0		101	61.2-141			
Surrogate: Toluene-d8	51.6		n	50.0		103	75.8-118			
Surrogate: 4-Bromofluorobenzene	52.I		**	50.0		104	68.9-123			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson **Lab ID:** B604175 **Reported:** 04/24/06 10:46

Percent Solids - Quality Control TestAmerica Analytical - Buffalo Grove

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6040286 - General Prep										
Blank (6040286-BLK1)				Prepared	& Analyz	ed: 04/14/0	06			
% Solids	ND	0.200	%							
Duplicate (6040286-DUP1)	Sou	rce: B60416	6-01	Prepared	& Analyz	ed: 04/14/0	06			
% Solids	80.4	0.200	%		79.7			0.874	20	
Batch 6040331 - General Prep										
Blank (6040331-BLK1)				Prepared:	04/17/06	Analyzed	: 04/18/06			
% Solids	ND	0.200	%							
Blank (6040331-BLK2)				Prepared:	04/17/06	Analyzed	: 04/18/06			
% Solids	ND	0.200	%							
Duplicate (6040331-DUP1)	Sou	ırce: B60417	5-09	Prepared:	04/17/06	Analyzed	: 04/18/06			
% Solids	86.8	0.200	%		88.6			2.05	20	
Duplicate (6040331-DUP2)	Sou	ırce: B60420	5-01	Prepared:	04/17/06	Analyzed	: 04/18/06			
% Solids	83.0	0.200	%		83.1			0.120	20	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project Number: M061401 Project Manager: Kim Janson

Lab ID: B604175 **Reported:** 04/24/06 10:46

Notes and Definitions

QC The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source method acceptance criteria.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

L This quality control measurement is below the laboratory established limit.

H This quality control measurement is above the laboratory established limit.

^ The laboratory is not NELAP accredited for this analyte by the indicated matrix and method.

The State of Illinois Accrediting Authority does not offer NELAP accreditation for this analyte by the indicated matrix and method.

Note: All analytes, by matrix and method, are accredited following current NELAP standards unless specifically noted by way of a qualifier listed above.

TestAmerica--Buffalo Grove, IL Wisconsin DNR Certification Lab ID: 999917160

TestAmerica--Buffalo Grove, IL NELAP Primary Accreditation: Illinois #100261

TestAmerica--Buffalo Grove, IL NELAP Secondary Accreditation: New Jersey #IL001

TestAmerica--Nashville, TN NELAP Secondary Accreditation: Illinois #200010

 $TestAmerica--Dayton, OH\ NELAP\ Secondary\ Accreditation:\ Illinois\ \#200008$

TestAmerica--Watertown, WI NELAP Primary Accreditation: Illinois #100453 TestAmerica--Watertown, WI Wisconsin DNR Certification Lab ID: 128053530

Finelia II 1993

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

7/13/64 Received by: (lab) REQUESTED SAMPLE ANALYSIS Silve Yewage 78-4765 MT2A vd Page Betited Name: Organic Carbon Content aboratory: Signature PRESERVATIVE Metals 6010B/7000A Total Priority Pollutant* V000L/80109 Total RCRA Metals * Relinquighed by: 2. Pesticides by 8081A Date 4/12/106 PCBs by 8082 2AOC² P³ 8530C AOC* PN 2032/8500B PNAs by 8310 gra * 9 五の工 BTEX by 5035/8260B GBTEX by 5035/8021 Received by: 2. Wet Weight Containers Number of 140ml and Size 30.20 L とるとなろう S)gm#ure/ * Run metal analyses using methods with lowest reporting limit needed to meet TACO Water Sample Matrix 50. Date: [3/04/ MOSTARDI PLATT ENVIRONMENTAL – CHAIN OF CUSTODY Time: (0): 5/5 Reporting: Dry Weight Relinquished by: 1. Project Manager: King Sample Collection Time 25:22 17:97 20 33 22:23 9:53 6.43 57.73 22. 11 16:44 Printed Name: C. E. W.Co., SKILL の表別の PROJECT INFORMATION Company: 14 112/ph Sample Collection 4 Weaver Plage 1, Date Condition of Sample Containers: COMMENTS 4 custody background concentrations and remediation objectives. Date: 4/13/26 10:30 10:30 520 Kensington Road, Suite 204, Oak Brook, Illinois 60523-2139 サンド 2 WK. Blany MPA Sample Point ID Received by: 1. 7 0)ーカ 2019 Claule Ellery III Company; CAPE My Char) X V 1 rinted Name; Please mot chain Phone: 630-993-2100 Fax: 630-993-9017 Sachmand Project Number: MO6140] 48 hr. 49 Purchase Order Number: 9 90 08 O N Mostarch Part Cur 10:30 LINE JANSANY/13/06 0 Subcontracted Laboratory Sample ID Relinquished by Sample Temp: ## TAT: 24 hr. Collector: Project Name; Delivered Via: **公** 次 4 tilled Name 9 * Signature \sim

Plus Lengt- Go E

50469 an 411416 Received/by: (lab) ANALYSIS 5 78-4762 MT2A vd Organic Carbon Content 2/1/2e PRESERVATIVE Metals 6010B/7000A Total Priority Pollutant* REQUESTED SAMPLE **交** A0007/80108 Date: 4/13/06 Total RCRA Metals * Time: 10:50 Gramo 10 Relinquished by: 2. Pesticides by 8081A **bCBs ph 8085** Affinted Name: Date 4/12/06 Company: OB 2AOC² Py 8270C AOCs Py 5035/8260B PMAs by 8310 TEMP. 4°C RECEIVED: BTEX by 5035/8260B Cloude Ellays II 4/13/06 C^{\prime} Contonas lestad 10:30 BTEX by 5035/8021 Received by: 2. Wet Weight Containers Number of and Size Company: rinted Name 100 x 102000 * Run metal analyses using methods with lowest reporting limit needed to meet TACO Sample Matrix Soil MOSTARDI PLATT ENVIRONMENTAL – CHAIN OF CUSTODY YUStandi Platt En inted Name: Date: Printed Name: Date: **Aby** Weight O. III. Relinquished by: 1. Sample Collection Time 41121010114743 a O Project Manager: of custody spolls This Start PROJECT INFORMATION Collection Stemature: 2 wk. | Reporting Sample Condition of Sample Containers: COMMENTS background concentrations and remediation objectives. 520 Kensington Road, Suite 204, Oak Brook, Illinois 60523-2139 Project Name: SCIC JANATHAL WILL AND MPA Sample Point ID Received by: 1. 10-15 148 年, 乙子烧. Company: MPC 148-2 Fax: 630-993-9017 Project Number: MO(a140 Purchase Order Number: Please nuto rostand Plut ENVI Sample Temp: $\mathcal{U}^{\circ}_{\mathcal{C}}$ Subcontracted Relinquished by Laboratory Sample ID Phone: 630-993-2100 TAT: 24 hr. Collector: Delivered Via: Printed Name:

Phone: (847) 808-7766 Fax: (847) 808-7772

24 April 2006

Lab ID: B604199

Kim Janson Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

RE: Sachnoff & Weaver Phase II

Enclosed are the results of analyses for samples received by the laboratory on 04/14/06. The sample results relate only to the tested analytes of interest and to the sample as received by the laboratory. At the time of analysis, the laboratory was in compliance with current NELAP standards and held accreditation for all analyses performed unless noted by a qualifier. The laboratory's Illinois NELAP accreditation number is 100261.

This report can not be reproduced, except in full, without written approval from the laboratory. If you have any questions concerning this report, please feel free to contact Jim Knapp or Margaret Kniest.

Sincerely,

TestAmerica Analytical Testing Corporation

Julie Meyer

Laboratory Director

James Knapp

Quality Assurance Manager

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental Project: Sachnoff & Weaver Phase II

 1520 Kensington Road Suite 204
 Project Number:
 M061401
 Lab ID:
 B604199

 Oak Brook, IL 60523-2139
 Project Manager:
 Kim Janson
 Reported:
 04/24/06 12:32

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Trip Blank	B604199-01	Water	04/13/06 00:00	04/14/06 15:00
GP-9 (2-4)	B604199-02	Soil	04/13/06 11:50	04/14/06 15:00
GP-9 (8-10)	B604199-03	Soil	04/13/06 11:58	04/14/06 15:00
GP-10 (0-4)	B604199-04	Soil	04/13/06 16:50	04/14/06 15:00
GP-10 (10-12)	B604199-05	Soil	04/13/06 17:29	04/14/06 15:00
MW-2	B604199-06	Water	04/13/06 19:04	04/14/06 15:00
MW-3	B604199-07	Water	04/13/06 19:25	04/14/06 15:00

Sample Receipt Notes

Please note that the chain of custody (COC) included with this report is considered part of the report. The data user should review any comments or notes made on the COC. Any receipt issues found by the laboratory that are not noted on the COC will be stated below.

All sample container custody seals are intact.

TestAmerica Analytical - Buffalo Grove

Reviewed & Andy .

Andy Johnson, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604199

Reported: 04/24/06 12:32

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	R Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
Trip Blank (B604199-01) Water	Sampled: 04/13/06 00:00	Receiv	ed: 04/14	1/06 15:00	·	-			Q
Acetone	ND	10.0	ug/l	1	6040385	04/19/06	04/20/06	EPA 8260B	
Benzene	ND	2.00	n	n	řt.	n	n	н	
Bromodichloromethane	ND	2.00	13	11	**	n	n	n .	
Bromoform	ND	1.00	17	##	н	11	H	11	
Bromomethane	ND	2.00	11	**	n	Ħ	**	bţ	
2-Butanone	ND	10.0	ч	H	IT	0	н	12	
Carbon disulfide	ND	2.00	Ħ	U	11	n		**	
Carbon tetrachloride	ND	2.00	D.	U	tr	H	"	rı .	
Chlorobenzene	ND	2.00	17	**	**	H		n	
Chlorodibromomethane	ND	2.00	++	11	II	87	H	n	
Chloroethane	ND	2.00	**	**	U	u	11	n	
Chloroform	ND	2.00	н	u	**	n n	**	11	
Chloromethane	ND	2.00	"	1)	**	n .	**	n	
1,1-Dichloroethane	ND	2.00	n	н	17	n	u	a	
1,2-Dichloroethane	ND	2.00	H	n	"	Ħ	0	u	
1,1-Dichloroethene	ND	2.00	#	11	"	н	11	, m	
cis-1,2-Dichloroethene	ND	2.00	н		17	H	**	n	
trans-1,2-Dichloroethene	ND	2.00	**	v	14	o	11	**	
1,2-Dichloropropane	ND	2.00	v	B	#	n	u	n.	
1,3-Dichloropropene (cis + trans)	ND	2.00	17	"	9	**	u .	n	
Ethylbenzene	ND	2.00	#1	**	"	11	n	11	
2-Hexanone	ND	10.0	11	*1	n	+1	**	н	
Methylene chloride	ND	2.00	**	U	17	u	H	н	
4-Methyl-2-pentanone	ND	10.0	1)	I)	11	,,	o	21	
Methyl tert-butyl ether	ND	2.00	n	**	н	H			
Styrene	ND	2.00	**	**	17	**	u	n	
1,1,2,2-Tetrachloroethane	ND	2.00	1*	**	11	u	n	17	
Tetrachloroethene	ND	2.00	н	n	**	0	n	#	
Toluene	ND	2.00	U	n	**	0	**	**	
1.1.1-Trichloroethane	ND	2.00	11	15	b	**	•	n	
1,1,2-Trichloroethane	ND	2.00	#	##	1)	**	D	n	
Trichloroethene	ND	2.00	17	**	в	**	D	NT .	
Trichlorofluoromethane	ND	2.00	0	и	11	u	3 *	#1	
Vinyl acetate	ND	2.00	n	U	11		**	11	
Vinyl chloride	ND	2.00	11	"	"		**	**	
Fotal Xylenes	ND	4.00	n	##	n	H	u	0	
Surrogate: Dibromofluoromethane		95.8 %	69.8-	133	,,	IJ	н	n	
Surrogate: 1,2-Dichloroethane-d4		99.8 %	61.2-		,,	0	47	n	
Surrogate: Toluene-d8	•	101%	75.8-		"	,,		n	
Surrogate: 4-Bromofluorobenzene	ı	98.4 %	68.9-		"	"	"	н	

TestAmerica Analytical - Buffalo Grove

Reviewed & Andy Jahnson
Approved by:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mostardi Platt Environmental

Oak Brook, IL 60523-2139

1520 Kensington Road Suite 204

1380 Busch Parkway Buffalo Grove, Illinois 60089

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604199

Reported: 04/24/06 12:32

Phone: (847) 808-7766

Fax: (847) 808-7772

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-9 (8-10) (B604199-03) Soil	Sampled: 04/13/06 11:58	Receive	d: 04/14/06	15:00					QC
Acetone	ND	24.9	ug/kg dry	ı	6040412	04/20/06	04/21/06	EPA 8260B	
Benzene	ND	4.98	U	U	1)	.,	n	H	
Bromodichloromethane	ND	4.98	D	U	11	u u	IT	Ħ	
Bromoform	ND	4.98	U	u	n	0	н	Ħ	
Bromomethane	ND	4.98	п	u	n	0	11	n	
2-Butanone	ND	9.97	"	ii.	**	n		**	
Carbon disulfide	ND	4.98	D.	n	v	ly.	17	н	
Carbon tetrachloride	ND	4.98	n,	ij	n	U	н	11	
Chlorobenzene	ND	4.98	n	μ	17	D	H	11	
Chlorodibromomethane	ND	4.98	n	n	ìī	v	n	n	
Chloroethane	ND	4.98	H	n	п	II.	tr	n	
Chloroform	ND	4.98	н	l7	17	It	n	н	
Chloromethane	ND	4.98	n)T	11	· ·	H	71	
1,1-Dichloroethane	ND	4.98	יי	n	11	n	34	**	
1,2-Dichloroethane	ND	4.98	11	n	11	n	11	**	
1,1-Dichloroethene	ND	4.98	11	n	TF	P	#	u	
cis-1,2-Dichloroethene	ND	4.98	n	**	21	Ŋ	**	н	
trans-1,2-Dichloroethene	ND	4.98	**	**	17	11	н	н	
1,2-Dichloropropane	ND	4.98	11	**	#1	n	**	u	
1,3-Dichloropropene (cis + trans)		2.99	Ħ	**	11	n	11	n	
Ethylbenzene	ND	4.98	†1	#1	Ħ	i r	11	и	
2-Hexanone	ND	9.97	Ħ	**	**	**	11	n	
Methylene chloride	ND	4.98	ŧı	*1	28	**	11	n	
4-Methyl-2-pentanone	ND	9.97	"	**	11	**	**	v	
Methyl tert-butyl ether	ND	4.98	21	н	**	#	n	U	
Styrene	ND	4.98	**	n	Ħ	**	u	U	
1,1,2,2-Tetrachloroethane	ND	4.98	u	n	н	**	u u	"	
Tetrachloroethene	ND	4.98	u	**	**	tt	a	,,	
Toluene	ND	4.98	u	н	n .	Ħ	u	U	
1,1,1-Trichloroethane	ND	4.98	p	n	0	Ħ	u	U	
1,1,2-Trichloroethane	ND	4.98	u	u	n	tt.	n	**	
Trichloroethene	ND	4.98	n		0	71	n	**	
Trichlorofluoromethane	ND	4.98	11	u) i	ęs	11	by	
Vinyl acetate	ND	9.97	11	11	n	ш	11	н	
Vinyl chloride	ND	4.98	n	n	n	0	n	29	
Total Xylenes	ND	9.97	**	n	11		n	H	
Surrogate: Dibromofluoromethar	······································	111%	55.9-	150	<i>tt</i>)r	ö	***************************************
Surrogate: 1,2-Dichloroethane-d		113 %	47.5-		**	,,	+1	,,	
Surrogate: Toluene-d8	7	105 %	55.4-		•	**	٠,,,	,,	
-	a	101 %	40.4-		,,	,,	tr	"	
Surrogate: 4-Bromofluorobenzen	е	101 %	40.4-	137			*		

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

1380 Busch Parkway Buffalo Grove, Illinois 60089

Project: Sachnoff & Weaver Phase II

Project Number: M061401

Project Manager: Kim Janson

Lab ID: B604199

Reported: 04/24/06 12:32

Phone: (847) 808-7766

Fax: (847) 808-7772

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-10 (0-4) (B604199-04) Soil	Sampled: 04/13/06 16:50	Receive	d: 04/14/00	5 15:00					QC
Acetone	ND	28.0	ug/kg dry	1	6040412	04/20/06	04/21/06	EPA 8260B	
Benzene	ND	5.61	tt	"	u	н	Ħ	н	
Bromodichloromethane	ND	5.61	te	1)	U	Ħ	Ħ	н	
Bromoform	ND	5.61	Ħ	**	n	ч	**		
Bromomethane	ND	5.61	u	"	v	**	**	**	
2-Butanone	ND	11.2	u	n	n	"	H		
Carbon disulfide	ND	5.61	ŧi.	11	n	n	12	"	
Carbon tetrachloride	ND	5.61	ii	11	н	н	**	n	
Chlorobenzene	ND	5.61	II .	11	h	"	**	U	
Chlorodibromomethane	ND	5.61	U	12	n	U	11		
Chloroethane	ND	5.61	11	##	17	u	11	*	
Chloroform	ND	5.61	u	Ħ	n	ŋ	a	1 *	
Chloromethane	ND	5.61	n	tt	17	**	n	n	
1,1-Dichloroethane	ND	5.61	n	**	**	n	u	**	
1,2-Dichloroethane	ND	5.61	11	и	17		u	17	
1.1-Dichloroethene	ND	5.61	H	0	17	H	D	#1	
cis-1,2-Dichloroethene	ND	5.61	**	u	rt .	н	bŢ	tı	
trans-1,2-Dichloroethene	ND	5.61	**	II .	11	ht	by	**	
1,2-Dichloropropane	ND	5.61	11	n	11	P	•	71	
1,3-Dichloropropene (cis + trans)		3.36	\$5	11	ti	Ħ	n	*1	
Ethylbenzene	ND	5.61	11	11	0	11	n	u	
2-Hexanone	ND	11.2	11	11	п	11	н	· ·	
Methylene chloride	ND	5.61	0	77	п	*	н	0	
4-Methyl-2-pentanone	ND	11.2	0	H	U	н	**	D	
Methyl tert-butyl ether	ND	5.61	u	n	11	0	*1	H	
Styrene	ND	5.61	n	17	11	0	n	n	
1,1,2,2-Tetrachloroethane	ND	5.61		11*	17	0	0	H	
Tetrachloroethene	ND	5.61		11	15	tr.	**	71	
Toluene	ND	5.61	11	Ħ	11	u	u	н	
1,1,1-Trichloroethane	ND	5.61		u	**	"		п	
1,1,2-Trichloroethane	ND	5.61	n		**	u		**	
Trichloroethene	ND	5.61	H	11	16	n	**	н	
Trichlorofluoromethane	ND	5.61	Ħ	n	71	n	D	ø	
Vinyl acetate	ND	11.2	Ħ	n	11	lş	D	U	
Vinyl chloride	ND ND	5.61	**	11	41	11	11	a	
Total Xylenes	ND	11.2	11	**	n	h	tτ	n	
Surrogate: Dibromofluoromethan	······································	97.7%	55.9-	150	P#	71	**************************************	25	
Surrogate: 1,2-Dichloroethane-d-		114%	33.9- 47.5-		,	**	"	**	
	4	104 %			n		, ,,		
Surrogate: Toluene-d8	_		55.4-		н	e e	n .	n	
Surrogate: 4-Bromofluorobenzen	e	101 %	40.4-	13/		**	**	**	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson, Project Manager

Page 4 of 18

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

1380 Busch Parkway Buffalo Grove, Illinois 60089

Project: Sachnoff & Weaver Phase II

Project Number: M061401

Project Manager: Kim Janson

Lab ID: B604199

Phone: (847) 808-7766

Fax: (847) 808-7772

Reported: 04/24/06 12:32

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Sampled: 04/13/06 19:04					.			QC
Acetone	ND	10.0	ug/l	1	6040385	04/19/06	04/21/06	EPA 8260B	
Benzene	ND	2.00	"	u	"	#	n	"	
Bromodichloromethane	ND	2.00	*1	п	ŧi	\$1	H	U	
Bromoform	ND	1.00	#	n	u	"	11	U	
Bromomethane	ND	2.00	n	ly .	D	u	**	11	
2-Butanone	ND	10.0	u	l7	D		**	D.	
Carbon disulfide	ND	2.00	u	**	***	n	n	n	
Carbon tetrachloride	ND	2.00	17	79	ts	n	n	H	
Chlorobenzene	ND	2.00	n	**	**	n	U	**	
Chlorodibromomethane	ND	2.00	17	**	19	**		**	
Chloroethane	ND	2.00	Ħ	tr	ч	18	н	**	
Chloroform	ND	2.00	Ħ	n n	н	##	n	**	
Chloromethane	ND	2.00	\$ *	u	u	**	**	U	
1.1-Dichloroethane	ND	2.00	**	b	n	**	**	D	
1,2-Dichloroethane	ND	2.00	21	11	IJ		**	11	
I,1-Dichloroethene	ND	2.00	U	19	u.	D	0	IT	
cis-1,2-Dichloroethene	ND	2.00	u	**	н	b	**	н	
trans-1,2-Dichloroethene	ND	2.00	17	FP	**	17	u	**	
1,2-Dichloropropane	ND	2.00	н	**	**	**	11	17	
1,3-Dichloropropene (cis + tran		2.00	Ħ	**	**	**	n	11	
Ethylbenzene	ND	2.00	17	u	**	**	Ħ	11	
2-Hexanone	ND	10.0	11	u	u	"	bt.	**	
Methylene chloride	ND	2.00	**	11	u	u	71	0	
4-Methyl-2-pentanone	ND	10.0	ø	11	D	ij	tt	13	
Methyl tert-butyl ether	ND	2.00	u	11	18	b	Ħ	11	
Styrene	ND	2.00	11	†F	,,	br	ti	n	
1,1,2,2-Tetrachloroethane	ND	2.00	D	11	**	**	O	**	
Tetrachloroethene	ND	2.00	17	ę 2	**	**	n.	**	
Toluene	ND	2.00	11	Ħ	**	Ħ	H	Ħ	
1.1.1-Trichloroethane	ND	2.00	"	n	"	**	11	а	
1,1,2-Trichloroethane	ND	2.00	**	п	**	n	"	0	
Trichloroethene	ND	2.00	n	n n	u	п	#1	D	
Trichlorofluoromethane	ND	2.00	u	0	U	n	tı	te	
Vinyl acetate	ND	2.00	u	n	"	n	n	lt.	
Vinyl chloride	ND	2.00	11	11	D	n	ıı.	"	
Total Xylenes	ND	4.00	11	**	H	n	u	17	
Surrogate: Dibromofluorometh		87.4 %	69.8	-133	"	н	"	n	
Surrogate: 1,2-Dichloroethane-		98.6 %	61.2		**	"	**	,,	
Surrogate: Toluene-d8	## !	101 %		-118	"	,,	. "		
Surrogate: 4-Bromofluorobenze	rne	96.0 %	68.9		p	"	ti .	u	
Jan ogaic. T-Dromojatorocease	ne.	20.0 70	00.9	-127					

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604199

Reported: 04/24/06 12:32

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

MW-3 (B604199-07) Water Sampled: 04/13/06 19:25 Received: 04/14/06 15:00 Acetone ND 10.0 ug/l 1 6040385 04/19/06 04/21/06 Benzene ND 2.00 "	EPA 8260B	QC
Benzene ND 2.00 """"""""""""""""""""""""""""""""""""	u D H H	
Section ND 2.00 "	1) 11	
ND 1.00 " " " " " " " " " " " " " " " " " "	11 11	
Bromomethane ND 2.00 " " " " " " " " "	15	
2-Butanone	**	
Carbon disulfide ND 2.00 "		
Carbon tetrachloride ND 2.00 " <td>**</td> <td></td>	**	
Chlorobenzene ND 2.00 " " " " " " " " " " " " " " " " " "		
Chlorodibromomethane ND 2.00 " " " " " " " " " " " " " " " " " "	ıı .	
Chloroethane ND 2.00 "	"	
Chloroferm Chloromethane ND ND ND ND ND ND ND ND ND N	u,	
Chloromethane ND 2.00 " " " " " " " " " " " " " " " " " "	n	
1,1-Dichloroethane ND 2.00 "	#	
1,2-Dichloroethane ND 2.00 " <td>ч</td> <td></td>	ч	
1,2-Dichloroethane ND 2.00 " <td>u</td> <td></td>	u	
cis-1,2-Dichloroethene ND 2.00 " </td <td>11</td> <td></td>	11	
cis-1,2-Dichloroethene ND 2.00 " </td <td>By .</td> <td></td>	By .	
trans-1,2-Dichloroethene ND 2.00 "	н	
1,2-Dichloropropane ND 2.00 " <td>ш</td> <td></td>	ш	
1,3-Dichloropropene (cis + trans) ND 2.00 "	ti.	
Ethylbenzene ND 2.00 "	u	
2-Hexanone ND 10.0 "	t?	
4-Methyl-2-pentanone ND 10.0 " " " "	**	
4-Methyl-2-pentanone ND 10.0 " " " "	11	
, ,	ti	
Methyl tert-butyl ether ND 2.00 " " " "	n	
Styrene ND 2.00 " " " " "	11	
1,1,2,2-Tetrachloroethane ND 2.00 " " " "	н	
Tetrachloroethene ND 2.00 " " " "	##	
Toluene ND 2.00 " " " "	u	
1,1,1-Trichloroethane ND 2.00 " " "	U	
1,1,2-Trichloroethane ND 2.00 " " " "	H	
Trichloroethene ND 2.00 " " " "	77	
Trichlorofluoromethane ND 2.00 " " " "	Ħ	
Vinyl acetate ND 2.00 " " " " "	и	
Vinyl chloride ND 2.00 " " " "	u	
Total Xylenes ND 4.00 " " " "	н	
Surrogate: Dibromofluoromethane 98.0 % 69.8-133 " " "	**	
Surrogate: 1,2-Dichloroethane-d4 101% 61.2-141 " " "	"	
Surrogate: Toluene-d8 103 % 75.8-118 " " "	,,	
Surrogate: 4-Bromofluorobenzene 97.8% 68.9-123 " " "		

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson

Lab ID: B604199

Reported: 04/24/06 12:32

Percent Solids

TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-9 (8-10) (B604199-03) Soil	Sampled: 04/13/06 11:58	Received	: 04/14/0	6 15:00					
% Solids	86.2	0.200	%	I	6040301	04/17/06	04/17/06	EPA 5035 7.5	
GP-10 (0-4) (B604199-04) Soil	Sampled: 04/13/06 16:50	Received	: 04/14/0	6 15:00					
% Solids	79.2	0.200	%]	6040301	04/17/06	04/17/06	EPA 5035 7.5	

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by:

Andy Johnson

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604199

Reported: 04/24/06 12:32

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
						······			,	

Blank (6040385-BLK1)				Prepared: 04/19/06 Analyzed: 04/20/06
Acetone	ND	10.0	ug/l	
Benzene	ND	2.00	**	
Bromodichloromethane	ND	2.00	**	
Bromoform	ND	1.00		
Bromomethane	ND	2.00		
2-Butanone	ND	10.0	0	
Carbon disulfide	ND	2.00		
Carbon tetrachloride	ND	2.00	H	
Chlorobenzene	ND	2.00	17	
Chlorodibromomethane	ND	2.00	\$1	
Chloroethane	ND	2.00	11	
Chloroform	ND	2.00	"	
Chloromethane	ND	2.00	U	
1,1-Dichloroethane	ND	2.00	D	
1,2-Dichloroethane	ND	2.00	n	
1,1-Dichloroethene	ND	2.00	н	
cis-1,2-Dichloroethene	ND	2.00	н	
trans-1,2-Dichloroethene	ND	2.00		
1,2-Dichloropropane	ND	2.00	**	
1,3-Dichloropropene (cis + trans)	ND	2.00	0	
Ethylbenzene	ND	2.00	n	
2-Hexanone	ND	10.0	n	
Methylene chloride	ND	2.00	n	
4-Methyl-2-pentanone	ND	10.0	14	
Methyl tert-butyl ether	ND	2.00	*1	
Styrene	ND	2.00	0	
1,1,2,2-Tetrachioroethane	ND	2.00	u	
Tetrachloroethene	ND	2.00	"	
Toluene	ND	2.00	n	
1,1,1-Trichloroethane	ND	2.00	h	
1,1,2-Trichloroethane	ND	2.00	11	
Trichloroethene	ND	2.00	**	
Trichlorofluoromethane	ND	2.00	11	
Vinyl acetate	ND	2.00	"	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Mostardi Platt Environmental

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

1380 Busch Parkway Buffalo Grove, Illinois 60089

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604199

Reported: 04/24/06 12:32

Phone: (847) 808-7766

Fax: (847) 808-7772

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Surrogate: Dibromofluoromethane 4 Surrogate: 1,2-Dichloroethane-d4 4 Surrogate: Toluene-d8 5 Surrogate: 4-Bromofluorobenzene 4 LCS (6040385-BS1) 4 Acetone 1 Benzene 4 Bromodichloromethane 5 Bromoform 5	ND 4 8.2 9.9 0.8 9.1 114 11 9.9 2 3.3 2 0.7	****	ug/l " " ug/l " "	50.0 50.0 50.0 50.0		96.4 99.8 102 98.2	%REC Limits :: 04/20/06 :: 04/20/06 :: 04/21/06 :: 04/21/06 :: 04/21/06	RPD	RPD Limit	Notes
Batch 6040385 - EPA 5030B (P/T) Blank (6040385-BLK1) Total Xylenes Surrogate: Dibromofluoromethane Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8 Surrogate: 4-Bromofluorobenzene LCS (6040385-BS1) Acetone Benzene 4 Bromodichloromethane 5 Bromoform 5	ND 4 8.2 9.9 0.8 9.1 114 1 9.9 2 3.3 2 0.7 1	4.00 10.0 2.00 2.00	ug/l " " " " ug/l	50.0 50.0 50.0 50.0 50.0 Frepared:	04/19/06	Analyzed 96.4 99.8 102 98.2 Analyzed	69.8-133 61.2-141 75.8-118 68.9-123 :: 04/21/06			
Blank (6040385-BLK1) Total Xylenes 1 Surrogate: Dibromofluoromethane 4 Surrogate: 1,2-Dichloroethane-d4 4 Surrogate: Toluene-d8 5 Surrogate: 4-Bromofluorobenzene 4 LCS (6040385-BS1) Acetone 1 Benzene 4 Bromodichloromethane 5 Bromoform 5	8.2 9.9 0.8 9.1 114 1 9.9 2 3.3 2 0.7 1	10.0	" " " ug/i	50.0 50.0 50.0 50.0 50.0 Prepared:		96.4 99.8 102 98.2 Analyzed	69.8-133 61.2-141 75.8-118 68.9-123 :: 04/21/06			
Total Xylenes	8.2 9.9 0.8 9.1 114 1 9.9 2 3.3 2 0.7 1	10.0	" " " ug/i	50.0 50.0 50.0 50.0 50.0 Prepared:		96.4 99.8 102 98.2 Analyzed	69.8-133 61.2-141 75.8-118 68.9-123 :: 04/21/06			
Surrogate: Dibromofluoromethane 4 Surrogate: 1,2-Dichloroethane-d4 4 Surrogate: Toluene-d8 5 Surrogate: 4-Bromofluorobenzene 4 LCS (6040385-BS1) 1 Acetone 1 Benzene 4 Bromodichloromethane 5 Bromoform 5	8.2 9.9 0.8 9.1 114 1 9.9 2 3.3 2 0.7 1	10.0	" " " ug/i	50.0 50.0 50.0 Prepared:	04/19/06	99.8 102 98.2 Analyzed	61.2-141 75.8-118 68.9-123 : 04/21/06			
Surrogate: 1,2-Dichloroethane-d4 4 Surrogate: Toluene-d8 5 Surrogate: 4-Bromofluorobenzene 4 LCS (6040385-BS1) 4 Acetone 1 Benzene 4 Bromodichloromethane 5 Bromoform 5	9.9 0.8 9.1 114 119.9 23.3 20.7	2.00 2.00	ug/l	50.0 50.0 50.0 Prepared:	04/19/06	99.8 102 98.2 Analyzed	61.2-141 75.8-118 68.9-123 : 04/21/06			
Surrogate: Toluene-d8 5 Surrogate: 4-Bromofluorobenzene 4 LCS (6040385-BS1) 1 Acetone 1 Benzene 4 Bromodichloromethane 5 Bromoform 5	0.8 9.1 114 1 9.9 2 3.3 2 0.7 1	2.00 2.00	ug/l	50.0 50.0 Prepared:	04/19/06	102 98.2 Analyzed	75.8-118 68.9-123 : 04/21/06	veloninos que destro la colonida de		
Surrogate: 4-Bromofluorobenzene 4 LCS (6040385-BS1) 1 Acetone 1 Benzene 4 Bromodichloromethane 5 Bromoform 5	9.1 114 1 9.9 2 3.3 2 0.7 1	2.00 2.00	ug/l	50.0 Prepared: 100	04/19/06	98.2 Analyzed	68.9-123 : 04/21/06			
LCS (6040385-BS1) Acctone 1 Benzene 4 Bromodichloromethane 5 Bromoform 5	9.9 2 3.3 2 0.7 1	2.00 2.00	Ħ	100	04/19/06		: 04/21/06			
Acetone I Benzene 4 Bromodichloromethane 5 Bromoform 5	9.9 2 3.3 2 0.7 1	2.00 2.00	Ħ	100	04/19/00					
Benzene 4 Bromodichloromethane 5 Bromoform 5	9.9 2 3.3 2 0.7 1	2.00 2.00	Ħ			• • •	10 150			
Bromodichloromethane 5 Bromoform 5	3.3 2 0.7 I	2.00				99.8	66-127			
Bromoform 5	0.7			50.0		107	70.2-136			
			u	50.0		101	44.6-150			
Dromonetiane		2.00		50.0		131	10-150			
2-Butanone	100 1	10.0	n	100		100	10-150			
		2.00	ŋ	100		104	10-150			
		2.00	11	50.0		84.2	56.1-137			
		2.00	n	50.0		99.6	75.3-123			
***************************************		2.00	p	50.0		109	66,5-140			
	=	2.00	n	50.0		134	30.4-150			
		2.00	11	50.0		110	64.5-135			
		2.00	11	50.0		108	22-150			
		2.00	**	50.0		113	57.6-140			
		2.00	ŧτ	50.0		104	62-142			
•		2.00	##	50.0		102	49.4-128			
	4.4 2	2.00	11	50.0		109	69.2-134			
, ,	3.0 2	2.00	11	50.0		106	57.6-135			
	1.7 2	2.00	Ħ	50.0		103	67.5-132			
• •	5.4 2	2.00	a	100		85.4	66.2-137			
	8.4 2	2.00	"	50.0		96.8	69.5-129			
•	0.0 1	0.0		100		50.0	10-150			
		2.00	u	50.0		107	43.2-150			
•	06 1	0.0	"	100		106	27.2-150			
, ,	6.4 2	2.00	R	50.0		113	66.8-141			
•		2.00	n	50.0		102	65.6-134			
•		2.00	H	50.0		77.8	56-146			
		2.00	n	50.0		95.2	61.9-133			
		2.00	12	50.0		96.0	70.5-123			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Andy Johnson, Project Manager

Page 9 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604199

Reported: 04/24/06 12:32

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6040385 - EPA 5030B (P/T)										
LCS (6040385-BS1)				Prepared:	04/19/06	Analyzed	l: 04/21/06			
1,1,1-Trichloroethane	50.4	2.00	ug/l	50.0		101	60.1-137			
1,1,2-Trichloroethane	54.0	2.00	**	50.0		108	77-132			
Trichloroethene	56.2	2.00	17	50.0		112	65.3-132			
Frichlorofluoromethane	57.3	2.00	11	50.0		115	47.2-150			
Vinyl acetate	37.5	2.00		100		37.5	10-150			
Vinyl chloride	52.7	2.00	78	50.0		105	39.1-150			
Total Xylenes	152	4.00	**	150		101	64.4-131			
Surrogate: Dibromofluoromethane	54.3		ıı	50.0		109	69.8-133		***************************************	
Surrogate: 1,2-Dichloroethane-d4	50.4		v	50.0		101	61.2-141			
Surrogate: Toluene-d8	51.4		"	50.0		103	75.8-118			
Surrogate: 4-Bromofluorobenzene	50.4		71	50.0		101	68.9-123			
Matrix Spike (6040385-MS1)	Sou	rce: B60419	02-03RE1	Prepared:	04/19/06	Analyzed	1: 04/23/06			
Acetone	108	10.0	ug/l	100	ND	108	10-150			
Benzene	50.4	2.00	*1	50.0	ND	101	54.8-135			
Bromodichloromethane	51.5	2.00	#1	50.0	ND	103	63-141			
Bromoform	45.6	1.00	n	50.0	ND	91.2	39.2-150			
Bromomethane	76.7	2.00	11	50.0	ND	153	10-150			Н
2-Butanone	105	10.0	11	100	ND	105	10-150			
Carbon disulfide	108	2.00	12	100	ND	108	10-150			
Carbon tetrachloride	43.2	2.00	#T	50.0	ND	86.4	50.4-138			
Chlorobenzene	49.2	2.00	n	50.0	ND	98.4	69.5-127			
Chlorodibromomethane	50.3	2.00	u u	50.0	ND	101	61.9-141			
Chloroethane	52.2	2.00	**	50.0	ND	104	18.3-150			
Chloroform	52.8	2.00	\$8	50.0	ND	106	54.1-142			
Chloromethane	53.7	2.00	**	50.0	2.62	102	19.1-150			
1,1-Dichloroethane	54.8	2,00	H	50.0	ND	110	51.9-141			
1,2-Dichloroethane	50.2	2.00	U	50.0	ND	100	55.5-147			
1.1-Dichloroethene	50.8	2.00	н	50.0	ND	102	36.2-135			
cis-1,2-Dichloroethene	51.4	2.00	**	50.0	ND	103	53.1-146			
trans-1,2-Dichloroethene	55.2	2.00	**	50.0	ND	110	53.7-131			
1,2-Dichloropropane	51.2	2.00	u	50.0	ND	102	60.6-137			
1,3-Dichloropropene (cis + trans)	98.4	2.00	и	100	ND	98.4	16.7-150			
Ethylbenzene	50.6	2.00	Ħ	50.0	ND	101	62.8-133			
2-Hexanone	47.1	10.0	**	100	ND	47.1	11.6-148			
		2.00	n	50.0	ND	106	33.8-150			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Andy Johnson, Project Manager

Page 10 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604199 Reported: 04/24/06 12:32

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Methylt-2-penianone	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Martix Spike (6040385-MS1)	Batch 6040385 - EPA 5030B (P/T)								·····		
Methyl terr-butyl ether	Matrix Spike (6040385-MS1)	Sou	rce: B60419	2-03RE1	Prepared:	04/19/06	Analyzed	I: 04/23/06			
Styrene	4-Methyl-2-pentanone	100	10.0	ug/l	100	ND	100	12.1-150			
1,1,2,2-Tetrachloroethane	Methyl tert-butyl ether	53.1	2.00	Ħ	50.0	ND	106	52.6-150			
Terrachlorochene	Styrene	48.9	2.00	71	50.0	ND	97.8	48.8-144			
1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	49.8	2.00	u	50.0	ND	99.6	56.8-150			
	Tetrachloroethene	49.5	2.00	"	50.0	ND	99.0	50.8-136			
1,1,1-Trichlorocthane	Toluene	48.3	2.00	ø	50.0	0.510	95.6	57.9-131			
	I,I,I-Trichloroethane	48.7	2.00	**	50.0	2.79	91.8	53.3-137			
National Control Con	1,1,2-Trichloroethane	52.6	2.00	ŧı	50.0	ND	105	63.7-140			
Surrogate: 128 2.00	Trichloroethene	48.3	2.00	,,	50.0	ND	96.6	47.2-131			
Viny chloride	Trichlorofluoromethane	42.9	2.00	ti.	50.0	ND	85.8	10.8-150			
Total Xylenes 152 4.00 " 150 ND 101 45.9-146 Surrogate: 1,2-Dichlorocchane-d4 50.8 " 50.0 102 61.2-141 Surrogate: 1,2-Dichlorocchane-d8 52.0 " 50.0 103 68.9-123 Matrix Spike Dup (6040385-MSD1) Source: B604192-03RE1 Prepared: 04/19/06 Analyzed: 04/23/06 Acetone 96.1 10.0 ug/l 100 ND 96.1 10.150 11.7 40 Benzene 50.4 2.00 " 50.0 ND 101 54.8-135 0.00 31.9 Bromofem 44.5 1.00 " 50.0 ND 101 54.8-135 0.00 31.9 Bromofem 59.2 2.00 " 50.0 ND 101 54.8-135 0.00 31.9 Bromofem 59.5 10.0 " 100 ND 95.5 10.150 9.48 40 Carbon disulfide 101 2.00 " 100 ND 95.5 10.150 9.48 40 Carbon disulfide 101 2.00 " 50.0 ND 101 101 10.150 6.70 40 Carbon disulfide 101 2.00 " 50.0 ND 101 10.150 6.70 40 Carbon disulfide 101 2.00 " 50.0 ND 101 10.150 6.70 40 Carbon disulfide 101 2.00 " 50.0 ND 101 10.150 6.70 40 Carbon disulfide 101 2.00 " 50.0 ND 101 10.150 6.70 40 Carbon disulfide 101 2.00 " 50.0 ND 101 10.150 6.70 40 Carbon disulfide 101 2.00 " 50.0 ND 101 10.150 6.70 40 Carbon disulfide 101 2.00 " 50.0 ND 101 10.150 6.70 40 Carbon disulfide 101 2.00 " 50.0 ND 101 10.150 6.70 40 Carbon disulfide 101 2.00 " 50.0 ND 101 10.150 6.70 40 Carbon disulfide 101 2.00 " 50.0 ND 101 10.150 6.70 40 Carbon disulfide 101 2.00 " 50.0 ND 101 10.150 6.70 40 Carbon disulfide 50.0 ND 98.2 61.9-141 2.41 29.3 Chlorochane 49.1 2.00 " 50.0 ND 98.2 61.9-141 2.41 29.3 Chlorochane 50.4 2.00 " 50.0 ND 98.2 61.9-141 2.41 29.3 Chlorochane 51.7 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chlorochane 51.7 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 L1,1-Dichlorocthane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 L1,1-Dichlorocthane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 L1,1-Dichlorocthane 46.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2	Vinyl acetate	128	2.00	ш	100	ND	128	10-150			
Surrogate: Dibromofluoromethane 52.7 50.0 105 69.8-133 Surrogate: Dibromofluoromethane 52.0 50.0 102 61.2-141 Surrogate: Tolucne-d8 52.0 50.0 103 68.9-123 Surrogate: A-Bromofluorobenzene 51.7 50.0 104 75.8-118 Surrogate: A-Bromofluorobenzene 51.7 50.0 103 68.9-123 Surrogate: A-Bromofluorobenzene 51.7 50.0 103 68.9-123 Surrogate: A-Bromofluorobenzene 50.1 10.0 ug/l 100 ND 96.1 10-150 11.7 40 Acetone 96.1 10.0 ug/l 100 ND 96.1 10-150 11.7 40 Acetone 50.4 2.00 " 50.0 ND 101 54.8-135 0.00 31.9 Bromoflichloromethane 50.7 2.00 " 50.0 ND 101 63-141 1.57 28.2 Bromoflichloromethane 59.2 2.00 " 50.0 ND 118 10-150 25.8 40 Acetone 59.2 2.00 " 50.0 ND 118 10-150 25.8 40 Acetone 59.5 10.0 " 100 ND 95.5 10-150 94.8 40 Acetone 42.6 2.00 " 50.0 ND 85.2 50.4-138 1.40 35.1 Chlorobenzene 48.6 2.00 " 50.0 ND 97.2 69.5-127 1.23 38.4 Chlorodibromomethane 49.1 2.00 " 50.0 ND 98.2 61.9-141 2.41 29.3 Chloroform 50.4 2.00 " 50.0 ND 010 18.3-150 3.11 40 Chloroform 50.4 2.00 " 50.0 ND 101 18.3-150 3.11 40 Chloroform 50.4 2.00 " 50.0 ND 101 18.3-150 3.80 40 40 Chloroform 50.4 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 1.1-150 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 1.1-150 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-150 1	Vinyl chloride	53.3	2.00	"	50.0	ND	107	13-150			
Surrogate: Incorporation of the mane of the surrogate: Incorporation of the surrogate: Incorpo	Total Xylenes	152	4.00		150	ND	101	45.9-146			
Solution	Surrogate: Dibromofluoromethane	<i>52,7</i>		*	50.0		105	69.8-133			-t-lil
Surrogate: 4-Bromofluorobenzene 51.7 " 50.0 103 68.9-123 50.0 50	Surrogate: 1,2-Dichloroethane-d4	50.8		**	50.0		102	61.2-141			
Matrix Spike Dup (6040385-MSD1) Source: B604192-03RE1 Prepared: 04/19/06 Analyzed: 04/23/06 Acetone 96.1 10.0 ug/l 100 ND 96.1 10-150 11.7 40 Benzene 50.4 2.00 " 50.0 ND 101 54.8-135 0.00 31.9 Bromodichloromethane 50.7 2.00 " 50.0 ND 101 63-141 1.57 28.2 Bromomethane 59.2 2.00 " 50.0 ND 118 10-150 2.44 29.3 Bromomethane 59.5 10.0 " 100 ND 95.5 10-150 2.44 29.3 Bromomethane 59.5 10.0 " 100 ND 95.5 10-150 2.8 40 Benzene Carbon disulfide 101 2.00 " 100 ND 95.5 10-150 9.48 40 Carbon tetrachloride 42.6 2.00 " 50.0 ND 85.2 50.4-138 1.40 35.1 Chlorobenzene 48.6 2.00 " 50.0 ND 97.2 69.5-127 1.23 38.4 Chlorodibromomethane 49.1 2.00 " 50.0 ND 98.2 61.9-141 2.41 29.3 Chlorochane 50.4 2.00 " 50.0 ND 98.2 61.9-141 2.41 29.3 Chlorochane 50.4 2.00 " 50.0 ND 101 18.3-150 3.11 40 Chlorochane 50.4 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 51.7 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 51.7 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 Ll-Dichlorocthane 52.2 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 Ll-Dichlorocthane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 Ll-Dichlorocthane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 Ll-Dichlorocthane 40.0 ND 99.8 55.5-147 0.599 25.2 Ll-Dichlorocthane 40.0 ND 99.8 55.5-147 0.599 25.2	Surrogate: Toluene-d8	52.0		H	50.0		104	75.8-118			
Acetone 96.1 10.0 ug/l 100 ND 96.1 10-150 11.7 40 Benzene 50.4 2.00 " 50.0 ND 101 54.8-135 0.00 31.9 Bromodichloromethane 50.7 2.00 " 50.0 ND 101 63-141 1.57 28.2 Bromodichloromethane 59.2 2.00 " 50.0 ND 89.0 39.2-150 2.44 29.3 Bromomethane 59.2 2.00 " 50.0 ND 118 10-150 25.8 40 Benzene 95.5 10.0 " 100 ND 95.5 10-150 9.48 40 Carbon disulfide 101 2.00 " 100 ND 95.5 10-150 9.48 40 Carbon disulfide 101 2.00 " 100 ND 85.2 50.4-138 1.40 35.1 Chlorobenzene 48.6 2.00 " 50.0 ND 85.2 50.4-138 1.40 35.1 Chlorodibromomethane 49.1 2.00 " 50.0 ND 97.2 69.5-127 1.23 38.4 Chlorodibromomethane 50.6 2.00 " 50.0 ND 98.2 61.9-141 2.41 29.3 Chlorochane 50.4 2.00 " 50.0 ND 101 18.3-150 3.11 40 Chloroform 50.4 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 51.7 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 52.2 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 1,1-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichloroethane 46.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2	Surrogate: 4-Bromofluorobenzene	51.7		"	50.0		103	68.9-123			
Benzene 50.4 2.00 " 50.0 ND 101 54.8-135 0.00 31.9 Bromodichloromethane 50.7 2.00 " 50.0 ND 101 63-141 1.57 28.2 Bromodichloromethane 50.7 2.00 " 50.0 ND 89.0 39.2-150 2.44 29.3 Bromomethane 59.2 2.00 " 50.0 ND 118 10-150 25.8 40 2-Butanone 95.5 10.0 " 100 ND 95.5 10-150 9.48 40 Carbon disulfide 101 2.00 " 100 ND 95.5 10-150 6.70 40 Carbon disulfide 42.6 2.00 " 50.0 ND 85.2 50.4-138 1.40 35.1 Chlorobenzene 48.6 2.00 " 50.0 ND 97.2 69.5-127 1.23 38.4 Chlorodibromomethane 49.1 2.00 " 50.0 ND 98.2 61.9-141 2.41 29.3 Chlorochane 50.4 2.00 " 50.0 ND 101 18.3-150 3.11 40 Chloroform 50.4 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 51.7 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 52.2 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 1,1-Dichloroethane 49.9 2.00 " 50.0 ND 98.8 55.5-147 0.599 25.2 1,1-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichloroethane 40.0 " 50.0 ND 99.8 55.5-147 0.599 25.2	Matrix Spike Dup (6040385-MSD1)	Sou	rce: B60419	2-03RE1	Prepared:	04/19/06	Analyzed	l: 04/23/06			
Bromodichloromethane 50.7 2.00 " 50.0 ND 101 63-141 1.57 28.2 Bromoform 44.5 1.00 " 50.0 ND 89.0 39.2-150 2.44 29.3 Bromomethane 59.2 2.00 " 50.0 ND 118 10-150 25.8 40 22-Butanone 95.5 10.0 " 100 ND 95.5 10-150 9.48 40 Carbon disulfide 101 2.00 " 100 ND 101 10-150 6.70 40 Carbon tetrachloride 42.6 2.00 " 50.0 ND 85.2 50.4-138 1.40 35.1 Chlorobenzene 48.6 2.00 " 50.0 ND 97.2 69.5-127 1.23 38.4 Chlorodibromomethane 49.1 2.00 " 50.0 ND 98.2 61.9-141 2.41 29.3 Chlorocthane 50.6 2.00 " 50.0 ND 98.2 61.9-141 2.41 29.3 Chlorocthane 50.4 2.00 " 50.0 ND 101 18.3-150 3.11 40 Chloroform 50.4 2.00 " 50.0 ND 101 18.3-150 3.11 40 Chloromethane 51.7 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 51.7 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 1,2-Dichlorocthane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichlorocthane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichlorocthane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichlorocthane 40.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichlorocthane 40.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichlorocthane 40.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichlorocthane 40.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichlorocthane 40.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichlorocthane 40.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichlorocthane 40.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2	Acetone	96.1	10.0	ug/l	100	ND	96.1	10-150	11.7	40	
Bromoform 44.5 1.00 " 50.0 ND 89.0 39.2-150 2.44 29.3 Bromomethane 59.2 2.00 " 50.0 ND 118 10-150 25.8 40 2-Butanone 95.5 10.0 " 100 ND 95.5 10-150 9.48 40 Carbon disulfide 101 2.00 " 100 ND 101 10-150 6.70 40 Carbon tetrachloride 42.6 2.00 " 50.0 ND 85.2 50.4-138 1.40 35.1 Chlorobenzene 48.6 2.00 " 50.0 ND 97.2 69.5-127 1.23 38.4 Chlorodibromomethane 49.1 2.00 " 50.0 ND 98.2 61.9-141 2.41 29.3 Chlorothane 50.6 2.00 " 50.0 ND 101 18.3-150 3.11 40 Chloroform 50.4 2.00 " 50.0 ND 101 18.3-150 3.11 40 Chloromethane 51.7 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 52.2 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 1.2-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2	Benzene	50.4	2.00	н	50.0	ND	101	54.8-135	0.00	31.9	
Bromomethane 59.2 2.00 " 50.0 ND 118 10-150 25.8 40 2-Butanone 95.5 10.0 " 100 ND 95.5 10-150 9.48 40 Carbon disulfide 101 2.00 " 100 ND 101 10-150 6.70 40 Carbon tetrachioride 42.6 2.00 " 50.0 ND 85.2 50.4-138 1.40 35.1 Chlorobenzene 48.6 2.00 " 50.0 ND 97.2 69.5-127 1.23 38.4 Chlorodibromomethane 49.1 2.00 " 50.0 ND 98.2 61.9-141 2.41 29.3 Chloroethane 50.6 2.00 " 50.0 ND 101 18.3-150 3.11 40 Chloroform 50.4 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 51.7 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 52.2 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 1.2-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2	Bromodichloromethane	50.7	2.00	н	50.0	ND	101	63-141	1.57	28.2	
2-Butanone 95.5 10.0 " 100 ND 95.5 10-150 9.48 40 Carbon disulfide 101 2.00 " 100 ND 101 10-150 6.70 40 Carbon tetrachloride 42.6 2.00 " 50.0 ND 85.2 50.4-138 1.40 35.1 Chlorobenzene 48.6 2.00 " 50.0 ND 97.2 69.5-127 1.23 38.4 Chlorodibromomethane 49.1 2.00 " 50.0 ND 98.2 61.9-141 2.41 29.3 Chlorocthane 50.6 2.00 " 50.0 ND 101 18.3-150 3.11 40 Chloroform 50.4 2.00 " 50.0 ND 101 18.3-150 3.11 40 Chlorocthane 51.7 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 51.7 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 1.2-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 93.2 36.2-135 8.62 33.3	Bromoform	44.5	1.00	17	50.0	ND	89.0	39.2-150	2.44	29.3	
Carbon disulfide 101 2.00 100 ND 101 10-150 6.70 40 Carbon tetrachloride 42.6 2.00 50.0 ND 97.2 69.5-127 1.23 38.4 Chlorodibromomethane 49.1 2.00 50.0 ND 98.2 61.9-141 2.41 29.3 Chloroethane 50.6 2.00 50.0 ND 98.2 61.9-141 2.41 29.3 Chloroform 50.4 2.00 50.0 ND 101 18.3-150 3.11 40 Chloroform 50.4 2.00 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 51.7 2.00 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 51.7 2.00 50.0 ND 104 51.9-141 4.86 27.6 1,2-Dichloroethane 49.9 2.00 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichloroethene 46.6 2.00 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichloroethene	Bromomethane	59.2	2.00	17	50.0	ND	118	10-150	25.8	40	
Carbon tetrachloride 42.6 2.00 " 50.0 ND 85.2 50.4+138 1.40 35.1 Chlorobenzene 48.6 2.00 " 50.0 ND 97.2 69.5-127 1.23 38.4 Chlorodibromomethane 49.1 2.00 " 50.0 ND 98.2 61.9-141 2.41 29.3 Chloroethane 50.6 2.00 " 50.0 ND 101 18.3-150 3.11 40 Chloroform 50.4 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 51.7 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 52.2 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 1.2-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0	2-Butanone	95.5	0.01	17	100	ND	95.5	10-150	9.48	40	
Chlorobenzene 48.6 2.00 " 50.0 ND 97.2 69.5-127 1.23 38.4 Chlorodibromomethane 49.1 2.00 " 50.0 ND 98.2 61.9-141 2.41 29.3 Chloroethane 50.6 2.00 " 50.0 ND 101 18.3-150 3.11 40 Chloroform 50.4 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 51.7 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 52.2 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 1.2-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 93.2 36.2-135 8.62 33.3	Carbon disulfide	101	2.00	17	100	ND	101	10-150	6.70	40	
Chlorodibromomethane 49.1 2.00 " 50.0 ND 98.2 61.9-141 2.41 29.3 Chloroethane 50.6 2.00 " 50.0 ND 101 18.3-150 3.11 40 Chloroform 50.4 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 51.7 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 52.2 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 1,2-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichloroethane 46.6 2.00 " 50.0 ND 93.2 36.2-135 8.62 33.3	Carbon tetrachloride	42.6	2.00	12	50.0	ND	85.2	50.4-138	1.40	35.1	
Chloroethane 50.6 2.00 " 50.0 ND 101 18.3-150 3.11 40 Chloroform 50.4 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 51.7 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 1.2-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1.1-Dichloroethane 46.6 2.00 " 50.0 ND 93.2 36.2-135 8.62 33.3	Chlorobenzene	48.6	2.00	11	50.0	ND	97.2	69.5-127	1.23	38.4	
Chloroform 50.4 2.00 " 50.0 ND 101 54.1-142 4.65 29.1 Chloromethane 51.7 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 ,2-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 ,1-Dichloroethene 46.6 2.00 " 50.0 ND 93.2 36.2-135 8.62 33.3	Chlorodibromomethane	49.1	2.00	31	50.0	ND	98.2	61.9-141	2.41	29.3	
Chloromethane 51.7 2.00 " 50.0 2.62 98.2 19.1-150 3.80 40 1,1-Dichloroethane 52.2 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 1,2-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichloroethene 46.6 2.00 " 50.0 ND 93.2 36.2-135 8.62 33.3	Chloroethane	50.6	2.00	17	50.0	ND	101	18.3-150	3.11	40	
Chloromethane 51.7 2.00 " 50.0 2.62 98.2 19.1-150 3.80 40 1,1-Dichloroethane 52.2 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 1,2-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichloroethene 46.6 2.00 " 50.0 ND 93.2 36.2-135 8.62 33.3	Chloroform	50.4	2.00	11	50.0	ND	101	54.1-142	4.65	29.1	
1,1-Dichloroethane 52.2 2.00 " 50.0 ND 104 51.9-141 4.86 27.6 1,2-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichloroethene 46.6 2.00 " 50.0 ND 93.2 36.2-135 8.62 33.3	Chloromethane	51.7	2.00	**	50.0	2.62	98.2	19.1-150	3.80		
1,2-Dichloroethane 49.9 2.00 " 50.0 ND 99.8 55.5-147 0.599 25.2 1,1-Dichloroethene 46.6 2.00 " 50.0 ND 93.2 36.2-135 8.62 33.3	1,1-Dichloroethane	52.2	2.00	**	50.0	ND	104	51.9-141	4.86		
1,1-Dichloroethene 46.6 2.00 " 50.0 ND 93.2 36.2-135 8.62 33.3	•			11							
,	. , .	•		**							
	cis-1,2-Dichloroethene	49.1	2.00	a	50.0	ND	98.2	53.1-146	4.58	29.2	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Jahnson

Andy Johnson, Project Manager

Page 11 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Spike

Source

Project Number: M061401 Project Manager: Kim Janson

Reporting

Lab ID: B604199

RPD

%REC

Reported: 04/24/06 12:32

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6040385 - EPA 5030B (P/T)										
Matrix Spike Dup (6040385-MSD1)	Sour	rce: B60419	2-03RE1	Prepared:	04/19/06	Analyzeo	1: 04/23/06			
rans-1,2-Dichloroethene	51.0	2.00	ug/l	50.0	ND	102	53.7-131	7.91	32	
,2-Dichloropropane	50.7	2.00	17	50.0	ND	101	60.6-137	0.981	26.8	
,3-Dichloropropene (cis + trans)	96.8	2.00	11	100	ND	96.8	16.7-150	1.64	40	
Ethylbenzene	49.0	2.00	u	50.0	ND	98.0	62.8-133	3.21	40	
2-Hexanone	46.5	10.0	**	100	ND	46.5	11.6-148	1.28	40	
Methylene chloride	45.3	2.00	**	50.0	ND	90.6	33.8-150	16.0	36.8	
l-Methyl-2-pentanone	98.0	10.0	n	100	ND	98.0	12.1-150	2.02	40	
Methyl tert-butyl ether	50.0	2.00	11	50.0	ND	100	52.6-150	6.01	40	
Styrene	47.8	2.00	u	50.0	ND	95.6	48.8-144	2.28	40	
,1,2,2-Tetrachloroethane	49.4	2.00	u	50.0	ND	98.8	56.8-150	0.806	25	
Tetrachloroethene	48.1	2.00	**	50.0	ND	96.2	50.8-136	2.87	40	
l'oluene	47.1	2.00	**	50.0	0.510	93.2	57.9-131	2.52	38.7	
.1,1-Trichloroethane	47.0	2.00	77	50.0	2.79	88.4	53.3-137	3.55	38.2	
,1,2-Trichloroethane	51.8	2.00	11	50.0	ND	104	63.7-140	1.53	27.4	
Frichloroethene	47.9	2.00	u	50.0	ND	95.8	47.2-131	0.832	40	
Frichlorofluoromethane	38.3	2.00	U	50.0	ND	76.6	10.8-150	11.3	40	
Vinyl acetate	128	2.00	Ħ	100	ND	128	10-150	0.00	40	
Vinyl chloride	48.5	2.00	11	50.0	ND	97.0	13-150	9.43	40	
Total Xylenes	144	4.00	11	150	ND	96.0	45.9-146	5.41	40	
Surrogate: Dibromofluoromethane	51.1		11	50.0		102	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	50.5		*	50.0		101	61.2-141			
Surrogate: Toluene-d8	51.6		n	50.0		103	75.8-118			
Surrogate: 4-Bromofluorobenzene	52.1		11	50.0		104	68.9-123			
Batch 6040412 - EPA 5035B [P/T]	***************************************						······			
Blank (6040412-BLK1)				Prepared	04/20/06	Analyze	d: 04/21/06	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Acetone	ND	25.0	ug/kg wet							
Benzene	ND	5.00	n							
3romodichloromethane	ND	5.00	u							
Bromoform	ND	5.00	ts							
Bromomethane	ND	5.00	**							

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

2-Butanone Carbon disulfide

Carbon tetrachloride

Chlorobenzene

Andy Johnson

ND

ND

ND ND 10.0

5.00 5.00

5.00

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401

Lab ID: B604199

Project Manager: Kim Janson Reported: 04/24/06 12:32

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040412 - EPA 5035B [P/T]				Drangrade	04/20/06	Analyzaci	l: 04/21/06		·····	
Blank (6040412-BLK1) Chlorodibromomethane	ND	5.00	ug/kg wet	ricpaicu.	04/20/00	Anaryzeu	1: 04/21/00			
Chloroethane	ND	5.00	"							
Chloroform	ND	5.00								
Chloromethane	ND	5.00	"							
1.1-Dichloroethane	ND	5.00	,,							
1,2-Dichloroethane	ND	5.00	n							
I,I-Dichloroethene	ND	5.00	,,							
eis-1,2-Dichloroethene	ND	5.00	v							
trans-1,2-Dichloroethene	ND	5.00	n							
1,2-Dichloropropane	ND	5.00	11							
1,3-Dichloropropene (cis + trans)	ND	3.00	w							
Ethylbenzene	ND	5.00								
2-Hexanone	ND	10.0	н							
Methylene chloride	ND	5.00								
4-Methyl-2-pentanone	ND	10.0	11							
Methyl tert-butyl ether	ND	5.00	17							
Styrene	ND	5.00	**							
1,1,2,2-Tetrachloroethane	ND	5.00	**							
Tetrachloroethene	ND	5.00	19							
Toluene	ND	5.00	77							
1,1,1-Trichloroethane	ND	5.00	**							
1,1,2-Trichloroethane	ND	5.00	79							
Trichloroethene	ND	5.00	**							
Trichlorofluoromethane	ND	5.00	11							
Vinyl acetate	ND	10.0	**							
Vinyl chloride	ND	5.00	**							
Total Xylenes	ND	10.0	21							
Surrogate: Dibromofluoromethane	45,2		"	50.0		90.4	55.9-150			
Surrogate: 1,2-Dichloroethane-d4	54.4		n	50.0		109	47.5-150			
Surrogate: Tolucne-d8	51.5		"	50.0		103	55.4-145			
Surrogate: 4-Bromofluorobenzene	50.6		"	50.0		101	40.4-137			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604199

Reported: 04/24/06 12:32

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040412 - EPA 5035B [P/T]		w.w.		······································						
LCS (6040412-BS1)				Prepared:	04/20/06	Analyzed	1: 04/21/06			
Acetone	138	25.0	ug/kg wet	100		138	10-150			
Benzene	44.9	5.00	n	50.0		89.8	54.8-130			
Bromodichloromethane	46.2	5.00	1)	50.0		92.4	55.7-137			
Bromoform	45.4	5.00	D	50.0		90.8	48.6-150			
Bromomethane	55.0	5.00	U	50.0		110	10-150			
2-Butanone	97.6	10.0	U	100		97.6	10-150			
Carbon disulfide	105	5.00	н	100		105	10-150			
Carbon tetrachloride	39.2	5.00	ш	50.0		78.4	43.4-141			
Chlorobenzene	42.3	5.00	н	50.0		84.6	56.2-127			
Chlorodibromomethane	46.9	5.00	*	50.0		93.8	54.1-142			
Chloroethane	83.9	5.00	н	50.0		168	10-150			Н
Chloroform	51.0	5.00	*	50.0		102	53.7-135			
Chloromethane	52.3	5.00	**	50.0		105	12.4-150			
1,1-Dichloroethane	52.4	5.00	Ħ	50.0		105	47.4-139			
1,2-Dichloroethane	46.3	5.00	\$7	50.0		92.6	54.6-140			
I,1-Dichloroethene	50.6	5.00	Ħ	50.0		101	35.5-135			
cis-1,2-Dichloroethene	49.5	5.00	**	50.0		99.0	52.5-136			
trans-1,2-Dichloroethene	51.7	5.00	17	50.0		103	47.8-133			
1,2-Dichloropropane	43.9	5.00	**	50.0		87.8	68.3-124			
1,3-Dichloropropene (cis + trans)	79.4	3.00	27	100		79.4	60.9-140			
Ethylbenzene	43.2	5.00	D	50.0		86.4	50.7-127			
2-Hexanone	51.8	10.0		100		51.8	10-150			
Methylene chloride	58.8	5.00	u	50.0		118	25.4-150			
4-Methyl-2-pentanone	111	10.0	u	100		111	10-150			
Methyl tert-butyl ether	49.6	5.00	0	50.0		99.2	47.3-150			
Styrene	38.8	5.00	0	50.0		77.6	48.3-127			
1,1,2,2-Tetrachloroethane	47.5	5.00	0	50.0		95.0	30.4-150			
Tetrachloroethene	42.3	5.00	0	50.0		84.6	46.7-131			
Toluene	42.2	5.00	**	50.0		84.4	53.6-127			
1,1,1-Trichloroethane	48.1	5.00	н	50.0		96.2	49.3-136			
1,1,2-Trichloroethane	48.9	5.00	**	50.0		97.8	57.2-146			
Trichloroethene	43.8	5.00	н	50.0		87.6	55-128			
Trichlorofluoromethane	55.9	5.00	**	50.0		112	10-150			
Vinyl acetate	56.2	10.0	#1	100		56.2	10-150			
Vinyl detaite Vinyl eliloride	54.0	5.00	**	50.0		108	28.4-150			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604199 Reported: 04/24/06 12:32

Phone: (847) 808-7766

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040412 - EPA 5035B [P/T]								,,,,,,		
LCS (6040412-BS1)				Prepared:	04/20/06	Analyzed	I: 04/21/06			
Total Xylenes	129	10.0	ug/kg wet	150		86.0	43.1-136			
Surrogate: Dibromofluoromethane	59.5	***************************************	"	50.0		119	55.9-150			
Surrogate: 1,2-Dichloroethane-d4	57.0		"	50.0		114	47.5-150			
Surrogate: Toluene-d8	52.0		"	50.0		104	55.4-145			
Surrogate: 4-Bromofluorobenzene	53.1		"	50.0		106	40.4-137			
LCS Dup (6040412-BSD1)				Prepared:	04/20/06	Analyzed	I: 04/21/06	****************		
Acetone	141	25.0	ug/kg wet	100		141	10-150	2.15	35	
Benzene	46.2	5.00	ii.	50.0		92.4	54.8-130	2.85	35	
Bromodichloromethane	48.4	5.00	11	50.0		96.8	55.7-137	4.65	31.6	
Bromoform	46.6	5.00	11	50.0		93.2	48.6-150	2.61	35	
Bromomethane	61.6	5.00	н	50.0		123	10-150	11.3	35	
2-Butanone	99.6	10.0	H	100		99.6	10-150	2.03	35	
Carbon disulfide	105	5.00	D	100		105	10-150	0.00	35	
Carbon tetrachloride	40.2	5.00	D	50.0		80.4	43.4-141	2.52	35	
Chlorobenzene	43.8	5.00	n	50.0		87.6	56.2-127	3.48	35	
Chlorodibromomethane	47.8	5.00	u	50.0		95.6	54.1-142	1.90	34	
Chloroethane	83.7	5.00	11	50.0		167	10-150	0.239	35	Н
Chloroform	51.3	5.00	**	50.0		103	53.7-135	0.587	32.2	
Chloromethane	53.7	5.00	n	50.0		107	12.4-150	2.64	35	
1,1-Dichloroethane	52.8	5.00	**	50.0		106	47.4-139	0.760	35	
1,2-Dichloroethane	47.3	5.00	11	50.0		94.6	54.6-140	2.14	31.5	
1,1-Dichloroethene	49.6	5.00	0	50.0		99.2	35.5-135	2.00	35	
cis-1,2-Dichloroethene	49.6	5.00	41	50.0		99.2	52.5-136	0.202	32.9	
trans-1,2-Dichloroethene	52.1	5.00	*11	50.0		104	47.8-133	0.771	35	
1,2-Dichloropropane	46.6	5.00	Ħ	50.0		93.2	68.3-124	5.97	27.4	
1,3-Dichloropropene (cis + trans)	83.0	3.00	н	100		83.0	60.9-140	4.43	35	
Ethylbenzene	45.1	5.00	17	50.0		90.2	50.7-127	4.30	35	
2-Hexanone	54.5	10.0	H	100		54.5	10-150	5.08	35	
Methylene chloride	57.4	5.00	u	50.0		115	25.4-150	2.41	35	
4-Methyl-2-pentanone	115	10.0	D	100		115	10-150	3.54	35	
Methyl tert-butyl ether	49.4	5.00	U	50.0		98.8	47.3-150	0.404	35	
Styrene	39.8	5.00	n	50.0		79.6	48.3-127	2.54	35	
1,1,2,2-Tetrachloroethane	47.3	5.00	11	50.0		94.6	30.4-150	0.422	35	
Tetrachloroethene	43.8	5.00	**	50.0		87.6	46.7-131	3.48	35	
Toluene	44.5	5.00	н	50.0		89.0	53.6-127	5.31	35	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Andy Johnson, Project Manager

Page 15 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604199

Reported: 04/24/06 12:32

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040412 - EPA 5035B [P/T]									· · · · · · · · · · · · · · · · · · ·	
LCS Dup (6040412-BSD1)				Prepared:	04/20/06	Analyzed	1: 04/21/06			
1,1,1-Trichloroethane	48.8	5.00	ug/kg wet	50.0		97.6	49.3-136	1.44	35	
1,1,2-Trichloroethane	50.5	5.00	11	50.0		101	57.2-146	3.22	30.2	
Trichloroethene	46.2	5.00	##	50.0		92.4	55-128	5.33	35	
Trichlorofluoromethane	55.8	5.00	н	50.0		112	10-150	0.179	35	
Vinyl acetate	61.3	10.0		100		61.3	10-150	8.68	35	
Vinyl chloride	57.5	5.00	27	50.0		115	28.4-150	6.28	35	
Total Xylenes	136	10.0	11	150		90.7	43.1-136	5.28	35	
Surrogate: Dibromofluoromethane	57.2		**	50.0		114	55.9~150			
Surrogate: 1,2-Dichloroethane-d4	57.6		"	50.0		115	47.5-150			
Surrogate: Toluene-d8	52.6		,,	50.0		105	<i>55.4-145</i>			
Surrogate: 4-Bromofluorobenzene	52.9		"	50.0		106	40.4-137			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson, Project Manager

Page 16 of 18

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604199

Reported: 04/24/06 12:32

Percent Solids - Quality Control TestAmerica Analytical - Buffalo Grove

	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Resur	Limi	CIIIIS	FC1C1	ICGun	701120	£21111€3	14 2		
Batch 6040301 - General Prep							i			
Blank (6040301-BLK1)				Prepared	& Analyz	ed: 04/17/	D6			
% Solids	ND	0.200	%							
Blank (6040301-BLK2)				Prepared	& Analyz	ed: 04/17/	06			
% Solids	ND	0.200	9/0							
Duplicate (6040301-DUP1)	Sou	Prepared	& Analyz	ed: 04/17/	06					
% Solids	86.9	0.200	%		86.2			0.809	20	
Duplicate (6040301-DUP2)	Soi	Source: B604199-04			& Analyz	ed: 04/17/	06			
% Solids	79.5	0.200	%		79.2			0.378	20	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson

Lab ID: B604199 04/24/06 12:32 Reported:

Notes and Definitions

The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source OC

method acceptance criteria.

Analyte DETECTED DET

ND Analyte NOT DETECTED at or above the reporting limit

Not Reported NR

Sample results reported on a dry weight basis dry

Relative Percent Difference RPD

This quality control measurement is below the laboratory established limit. L

This quality control measurement is above the laboratory established limit. Н

The laboratory is not NELAP accredited for this analyte by the indicated matrix and method.

The State of Illinois Accrediting Authority does not offer NELAP accreditation for this analyte by the indicated matrix and method.

Note: All analytes, by matrix and method, are accredited following current NELAP standards unless specifically noted by way of a qualifier listed above.

TestAmerica--Buffalo Grove, IL Wisconsin DNR Certification Lab ID: 999917160 TestAmerica--Buffalo Grove, IL NELAP Primary Accreditation: Illinois #100261 TestAmerica--Buffalo Grove, IL NELAP Secondary Accreditation: New Jersey #IL001

TestAmerica--Nashville, TN NELAP Secondary Accreditation: Illinois #200010 TestAmerica--Dayton, OH NELAP Secondary Accreditation: Illinois #200008 TestAmerica--Watertown, WI NELAP Primary Accreditation: Illinois #100453

TestAmerica--Watertown, WI Wisconsin DNR Certification Lab ID: 128053530

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Andy Johnson, Project Manager

Page 18 of 18

Ŕ, Ş 8 % 20-10+661 Received by: (lab) Date: 409 REQUESTED SAMPLE ANALYSIS 78-4765 MT2A vd N Printed Name: Organic Carbon Content Page Laboratory: Signature: PRESERVATIVE Metals 6010B/7000A *Installog vinoing lated A0007/80105 Total RCRA Metals * Pesticides by 8081A Date: Relinquished by: Date 4/13/06 bCB₂ by 8082 2AOC² P³ 8510C Printed Name: Signature: AOC2 Py 5035/8260B PNAs by 8310 BLEX 6y 5035/8260B \pm BLEX by 5035/8021 Received by: 2. Wet Weight Containers Number of 2 Equator 1 and Size 1 Howl 3 40ml Sean M Jasailas * Run metal analyses using methods with lowest reporting limit needed to meet TACO アイナン Sample Matrix Jake L 50, MOSTARDI PLATT ENVIRONMENTAL – CHAIN OF CUSTODY Dry Weight Relinquished by: 1. Sample Collection Time 7.89 40.61 S: S 6:50 12.25 bod Project Manager: PROJECT INFORMATION Yr. 计 Sample Collection 4//3bb Reporting: Date 4127306 Condition of Sample Containers: COMMENTS background concentrations and remediation objectives. 4 Walneway 1520 Kensington Road, Suite 204, Oak Brook, Illinois 60523-2139 2 wk. MPA Sample Point ID 2-6 <u>م</u> J Ico Blank Received by: MW-2 MW -3 Charita (F) 9. 01-10 39-10 48 hr. 77 Juk. မ် Phone: 630-993-2100 Fax: 630-993-9017 Project Name: Scrodang Project Number: MO6440 Purchase Order Number: State Subcontracted Relinquished by Laboratory Sample ID 24 hr. Collector: Delivered Via: Placese Signature: TAT:

Phone: (847) 808-7766 Fax: (847) 808-7772

24 April 2006

Lab ID: B604201

Kim Janson Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

RE: Sachnoff & Weaver Phase II

Enclosed are the results of analyses for samples received by the laboratory on 04/14/06. The sample results relate only to the tested analytes of interest and to the sample as received by the laboratory. At the time of analysis, the laboratory was in compliance with current NELAP standards and held accreditation for all analyses performed unless noted by a qualifier. The laboratory's Illinois NELAP accreditation number is 100261.

This report can not be reproduced, except in full, without written approval from the laboratory. If you have any questions concerning this report, please feel free to contact Jim Knapp or Margaret Kniest.

Sincerely,

TestAmerica Analytical Testing Corporation

Julie Meyer

Laboratory Director

James Knapp

Quality Assurance Manager

Phone: (847) 808-7766 Fax: (847) 808-7772

Reported: 04/24/06 11:00

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604201

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
OA/OC	B604201-01	Water	04/13/06 16:35	04/14/06 15:00

Sample Receipt Notes

Please note that the chain of custody (COC) included with this report is considered part of the report. The data user should review any comments or notes made on the COC. Any receipt issues found by the laboratory that are not noted on the COC will be stated below.

All sample container custody seals are intact.

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson, Project Manager

Page 1 of 8

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604201 Reported: 04/24/06 11:00

Oak Brook, IL 60523-2139

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
QA/QC (B604201-01) Water	Sampled: 04/13/06 16:35	Received:	04/14/06	15:00					QC
Acetone	ND	10.0	ug/l	1	6040385	04/19/06	04/21/06	EPA \$260B	
Benzene	ND	2.00	11		##	ļs.	n	†ŧ	
Bromodichloromethane	ND	2.00	61	IJ	19	11	n	Ħ	
Bromoform	ND	1.00	**	11	11	"	U	и	
Bromomethane	ND	2.00	75	н	D	12	U	н	
2-Butanone	ND	10.0	n	**	n	ŋ	Ħ	11	
Carbon disulfide	ND	2.00	11	rr	11	"	п	11	
Carbon tetrachloride	ND	2.00	"	t#	n	*1	Ħ	D	
Chlorobenzene	ND	2.00	D	H	u	a	TP	u	
Chlorodibromomethane	ND	2.00	n	tř	н	**	Ħ	U	
Chloroethane	ND	2.00	0	n	**	**	Ħ	11	
Chloroform	ND	2.00	o	11	**	**	#	**	
Chloromethane	ND	2.00	н	1)	**	11	13	**	
1.1-Dichloroethane	ND	2.00	н	D	**	15	H	**	
1,2-Dichloroethane	ND	2.00	**	U	18	Ħ	19	п	
1,1-Dichloroethene	ND	2.00	**	n	H	н		Ħ	
cis-1,2-Dichloroethene	ND	2.00	**	"	**	n		Ħ	
trans-1,2-Dichloroethene	ND	2.00	**	п	D	ı,	0	*	
1,2-Dichloropropane	ND	2.00	11	11	n	n .	0	n	
1,3-Dichloropropene (cis + trans		2.00	"	#	n n	11	*1	п	
Ethylbenzene	,, ND	2.00	**	tt .	n	u	**	U	
2-Hexanone	ND	10.0	n	**	U	n	**	n	
Methylene chloride	ND	2.00	n	39	u	п	17	i)	
4-Methyl-2-pentanone	ND ND	10.0	u	**	n n	ņ	tt.	n	
Methyl tert-butyl ether	ND ND	2.00	n	**		**	H	11	
Styrene	ND ND	2.00	u		**	?3	19	0	
1,1,2,2-Tetrachloroethane	ND	2.00	u	11	et	Ħ	ÞŦ	ti	
Tetrachloroethene	ND	2.00	**	n	**	11	11	11	
Toluene	ND	2.00	Ħ	u	**	n	12	**	
1,1,1-Trichloroethane	ND	2.00	**	v	**	n	17	**	
1.1.2-Trichloroethane	ND ND	2.00	**	1)	11	H		14	
Trichloroethene	ND	2.00	**	u	**	n	u	17	
Trichlorofluoromethane	ND ND	2.00	**	п	11	,,	U	11	
	ND ND	2.00	**	"	17	v	*	17	
Vinyl acetate	ND ND	2.00	**	**	n	u	Ħ	н	
Vinyl chloride	ND	4.00	n	11	11	,,	Ħ	n	
Total Xylenes				0 122	,,	,,	"	e e	
Surrogate: Dibromofluorometho		90.0 %		8-133	,, ,,	"	,,		
Surrogate: 1,2-Dichloroethane-	d4	96.8 %		2-141	,,	,,	. "	н	
Surrogate: Toluene-d8		101 %		8-118	,,	,,	,,	и	
Surrogate: 4-Bromofluorobenze	ne	97.6 %	68.9	9-123	"	,	"	"	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604201

Reported: 04/24/06 11:00

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040385 - EPA 5030B (P/T)										
Biank (6040385-BLK1)				Prepared:	04/19/06	Analyzed	: 04/20/06			
Acetone	ND	10.0	ug/l							
Benzene	ND	2.00	b							
Bromodichloromethane	ND	2.00	U							
Bromoform	ND	1.00	"							
Bromomethane	ND	2.00	H							
2-Butanone	ND	10.0	n							
Carbon disulfide	ND	2.00	D							
Carbon tetrachloride	ND	2.00	b							
Chlorobenzene	ND	2.00	U							
Chlorodibromomethane	ND	2.00	u							
Chloroethane	ND	2.00	v							
Chloroform	ND	2.00	0							
Chloromethane	ND	2.00								
1,1-Dichloroethane	ND	2.00	0							
1,2-Dichloroethane	ND	2.00	D							
1,1-Dichloroethene	ND	2.00	U							
cis-1,2-Dichloroethene	ND	2.00	n							
trans-1,2-Dichloroethene	ND	2.00	D							
1,2-Dichloropropane	ND	2.00	n							
1,3-Dichloropropene (cis + trans)	ND	2.00	v							
Ethylbenzene	ND	2.00	U							
2-Hexanone	ND	10.0	•							
Methylene chloride	ND	2.00	o							
4-Methyl-2-pentanone	ND	10.0	u							
Methyl tert-butyl ether	ND	2.00	n							
Styrene	ND	2.00								
1.1,2,2-Tetrachloroethane	ND	2.00								
Tetrachloroethene	ND	2.00	n							
Toluene	ND	2.00								
1.1.1-Trichloroethane	ND	2.00	D.							
1.1,2-Trichloroethane	ND	2.00	n							
Trichloroethene	ND	2.00	11				÷			
Trichlorofluoromethane	ND	2.00								
Vinyl acetate	ND	2.00	D							
Vinyl decide	· ND	2.00	11							

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604201

Reported: 04/24/06 11:00

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040385 - EPA 5030B (P/T)					······					
Blank (6040385-BLK1)				Prepared:	04/19/06	Analyzed	: 04/20/06			
Total Xylenes	ND	4.00	ug/l							
Surrogate: Dibromofluoromethane	48.2		"	50.0		96.4	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	49.9		**	50.0		99.8	61.2-141			
Surrogate: Toluene-d8	50.8		"	50.0		102	75.8-118			
Surrogate: 4-Bromofluorobenzene	49.1		,,	50.0		98.2	68.9-123			
LCS (6040385-BS1)				Prepared:	04/19/06	Analyzed	l: 04/21/06			
Acetone	114	10.0	ug/i	100		114	10-150			
Benzene	49.9	2.00	"	50.0		99.8	66-127			
Bromodichloromethane	53.3	2.00	**	50.0		107	70.2-136			
Bromoform	50.7	1.00	"	50.0		101	44.6-150			
Bromomethane	65.4	2.00	17	50.0		131	10-150			
2-Butanone	100	10.0	"	100		100	10-150			
Carbon disulfide	104	2.00	11	100		104	10-150			
Carbon tetrachloride	42.1	2.00	**	50.0		84.2	56.1-137			
Chlorobenzene	49.8	2.00	"	50.0		99.6	75.3-123			
Chlorodibromomethane	54.3	2.00	11	50.0		109	66.5-140			
Chloroethane	66.8	2.00	11	50.0		134	30.4-150			
Chloroform	55.1	2.00	11	50.0		110	64.5-135			
Chloromethane	54.0	2.00	n	50.0		108	22-150			
1,1-Dichloroethane	56.7	2.00	υ	50.0		113	57.6-140			
1,2-Dichloroethane	52.2	2.00	н	50.0		104	62-142			
1,1-Dichloroethene	51.1	2.00	n	50.0		102	49.4-128			
cis-1,2-Dichloroethene	54.4	2.00	U	50.0		109	69.2-134			
trans-1,2-Dichloroethene	53.0	2.00	"	50.0		106	57.6-135			
1,2-Dichloropropane	51.7	2.00		50.0		103	67.5-132			
1,3-Dichloropropene (cis + trans)	85.4	2.00	"	100		85.4	66.2-137			
Ethylbenzene	48.4	2.00		50.0		96.8	69.5-129			
2-Hexanone	50.0	10.0	u	100		50.0	10-150			
Methylene chloride	53.3	2.00	·	50.0		107	43.2-150			
4-Methyl-2-pentanone	106	10.0	u	100		106	27.2-150			
Methyl tert-butyl ether	56.4	2.00	**	50.0		113	66.8-141			
Styrene	50.9	2.00	**	50.0		102	65.6-134			
1,1,2,2-Tetrachloroethane	38.9	2.00	11	50.0		77.8	56-146			
Tetrachloroethene	47.6	2.00	**	50.0		95.2	61.9-133			
Toluene	48.0	2.00	**	50.0		96.0	70.5-123			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Andy Johnson, Project Manager

Page 4 of 8

Phone: (847) 808-7766 Fax: (847) 808-7772

Reported: 04/24/06 11:00

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604201

Volatile Organic Compounds by EPA Method 8260B - Quality Control

TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040385 - EPA 5030B (P/T)										
LCS (6040385-BS1)				Prepared:	04/19/06	Analyzed	1: 04/21/06			
1,1,1-Trichloroethane	50.4	2.00	ug/l	50.0		101	60.1-137			
1,1,2-Trichloroethane	54.0	2.00	u	50.0		108	77-132			
Trichloroethene	56.2	2.00	ш	50.0		112	65.3-132			
Trichlorofluoromethane	57.3	2.00	77	50.0		115	47.2-150			
Vinyl acetate	37.5	2.00	n	100		37.5	10-150			
Vinyl chloride	52.7	2.00	n	50.0		105	39.1-150			
Total Xylenes	152	4.00	u	150		101	64.4-131			
Surrogate: Dibromofluoromethane	54.3		#	50.0		109	69.8-133			
Surrogate: 1,2-Dichlorocthane-d4	50.4		11	50.0		101	61.2-141			
Surrogate: Toluene-d8	51.4		"	50.0		103	75.8-118			
Surrogate: 4-Bromofluorobenzene	50.4		"	50.0		101	68.9-123			
Matrix Spike (6040385-MS1)	So	urce: B60419	2-03RE1	Prepared:	04/19/06	Analyzed	1: 04/23/06			
Acetone	108	10.0	ug/l	100	ND	108	10-150			
Benzene	50.4	2.00	н	50.0	ND	101	54.8-135			
Bromodichloromethane	51.5	2.00	**	50.0	ND	103	63-141			
Bromoform	45.6	1.00	н	50.0	ND	91.2	39.2-150			
Bromomethane	76.7	2.00		50.0	ND	153	10-150			H
2-Butanone	105	10.0		100	ND	105	10-150			
Carbon disulfide	108	2.00	u	100	ND	108	10-150			
Carbon tetrachloride	43.2	2.00	77	50.0	ND	86.4	50.4-138			
Chlorobenzene	49.2	2.00	17	50.0	ND	98.4	69.5-127			
Chlorodibromomethane	50.3	2.00	**	50.0	ND	101	61.9-141			
Chloroethane	52.2	2.00		50.0	ND	104	18.3-150			
Chloroform	52.8	2.00	"	50.0	ND	106	54.1-142			
Chloromethane	53.7	2.00	0	50.0	2.62	102	19.1-150			
1,1-Dichloroethane	54.8	2.00	н	50.0	ND	110	51.9-141			
1,2-Dichloroethane	50.2	2.00	71	50.0	ND	100	55.5-147			
1,1-Dichloroethene	50.8	2.00	ŦŤ	50.0	ND	102	36.2-135			
cis-1,2-Dichloroethene	51.4	2.00	ıı	50.0	ND	103	53.1-146			
trans-1,2-Dichloroethene	55.2	2.00	"	50.0	ND	110	53.7-131			
1,2-Dichloropropane	51.2	2.00	u	50.0	ND	102	60.6-137			
1,3-Dichloropropene (cis + trans)	98.4	2.00	u	100	ND	98.4	16.7-150			
Ethylbenzene	50.6	2.00	**	50.0	ND	101	62.8-133			
2-Hexanone	47.1	10.0	**	100	ND	47.1	11.6-148			
Methylene chloride	53.2	2.00	**	50.0	ND	106	33.8-150			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Andy Johnson, Project Manager

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604201

Reported: 04/24/06 11:00

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040385 - EPA 5030B (P/T)										
Matrix Spike (6040385-MS1)	Soi	urce: B60419	2-03RE1	Prepared:	04/19/06	Analyzed	: 04/23/06			
4-Methyl-2-pentanone	100	10.0	ug/l	100	ND	100	12.1-150			
Methyl tert-butyl ether	53.1	2.00	U	50.0	ND	106	52.6-150			
Styrene	48.9	2.00	U	50.0	ND	97.8	48.8-144			
1,1,2,2-Tetrachloroethane	49.8	2.00	ŧı	50.0	ND	99.6	56.8-150			
Tetrachloroethene	49.5	2.00	**	50.0	ND	99.0	50.8-136			
Toluene	48.3	2.00	13	50.0	0.510	95.6	57.9-131			
1,1,1-Trichloroethane	48.7	2.00	17	50.0	2.79	91.8	53.3-137			
1,1,2-Trichloroethane	52.6	2.00	**	50.0	ND	105	63.7-140			
Trichloroethene	48.3	2.00	н	50.0	ND	96.6	47.2-131			
Trichlorofluoromethane	42.9	2.00	Ħ	50.0	ND	85.8	10.8-150			
Vinyl acetate	128	2.00	11	100	ND	128	10-150			
Vinyl chloride	53.3	2.00	n	50.0	ND	107	13-150			
Total Xylenes	152	4.00	U	150	ND	101	45.9-146			
Surrogate: Dibromofluoromethane	52.7		,,	50.0		105	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	50.8		"	50.0		102	61.2-141			
Surrogate: Toluene-d8	52.0		"	50.0		104	75.8-118			
Surrogate: 4-Bromofluorobenzene	51 .7		"	50.0		103	68.9-123			
Matrix Spike Dup (6040385-MSD1)	So	urce: B60419	2-03RE1	Prepared:	04/19/06	Analyze	1: 04/23/06			
Acetone	96.1	0.01	ug/l	100	ND	96.1	10-150	11.7	40	
Benzene	50.4	2.00	"	50.0	ND	101	54.8-135	0.00	31.9	
Bromodichloromethane	50.7	2.00	*1	50.0	ND	101	63-141	1.57	28.2	
Bromoform	44.5	1.00	71	50.0	ND	89.0	39.2-150	2.44	29.3	
Bromomethane	59.2	2.00	**	50.0	ND	118	10-150	25.8	40	
2-Butanone	95.5	10.0	pt	100	ND	95.5	10-150	9.48	40	
Carbon disulfide	101	2.00	"	100	ND	101	10-150	6.70	40	
Carbon tetrachloride	42.6	2.00	u	50.0	ND	85.2	50.4-138	1.40	35.1	
Chlorobenzene	48.6	2.00	н	50.0	ИD	97.2	69.5-127	1.23	38.4	
Chlorodibromomethane	49.1	2.00	11	50.0	ND	98.2	61.9-141	2.41	29.3	
Chloroethane	50.6	2.00	**	50.0	ND	101	18.3-150	3.11	40	
Chloroform	50.4	2.00	17	50.0	ND	101	54.1-142	4.65	29.1	
Chloromethane	51.7	2.00	D	50.0	2.62	98.2	19.1-150	3.80	40	
1,1-Dichloroethane	52.2	2.00	o	50.0	ND	104	51.9-141	4.86	27.6	
1,2-Dichloroethane	49.9	2.00	**	50.0	ND	99.8	55.5-147	0.599	25.2	
1,1-Dichloroethene	46.6	2.00	14	50.0	ND	93.2	36.2-135	8.62	33.3	
cis-1,2-Dichloroethene	49.1	2.00	Ħ	50.0	ND	98.2	53.1-146	4.58	29.2	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson

Page 6 of 8

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604201

Reported: 04/24/06 11:00

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040385 - EPA 5030B (P/T)			***	***************************************				***************************************		
Matrix Spike Dup (6040385-MSD1)	Sou	ırce: B60419	2-03RE1	Prepared:	04/19/06	Analyzed	1: 04/23/06			***************************************
trans-1,2-Dichloroethene	51.0	2.00	ug/l	50.0	ND	102	53.7-131	7.91	32	
1,2-Dichloropropane	50.7	2.00	#	50.0	ND	101	60.6-137	0.981	26.8	
1,3-Dichloropropene (cis + trans)	96.8	2.00	11	100	ND	96.8	16.7-150	1.64	40	
Ethylbenzene	49.0	2.00	U	50.0	ND	98.0	62.8-133	3.21	40	
2-Hexanone	46.5	10.0	"	100	ND	46.5	11.6-148	1.28	40	
Methylene chloride	45.3	2.00	11	50.0	ND	90.6	33.8-150	16.0	36.8	
4-Methyl-2-pentanone	98.0	10.0	**	100	ND	98.0	12.1-150	2.02	40	
Methyl tert-butyl ether	50.0	2.00	97	50.0	ND	100	52.6-150	6.01	40	
Styrene	47.8	2.00	R	50.0	ND	95.6	48.8-144	2.28	40	
1,1,2,2-Tetrachloroethane	49.4	2.00	17	50.0	ND	98.8	56.8-150	0.806	25	
Tetrachloroethene	48.1	2.00	U	50.0	ND	96.2	50.8-136	2.87	40	
Toluene	47.1	2.00	U	50.0	0.510	93.2	57.9-131	2.52	38.7	
1,1,1-Trichloroethane	47.0	2.00	Ħ	50.0	2.79	88.4	53.3-137	3.55	38.2	
1,1,2-Trichloroethane	51.8	2.00	Ħ	50.0	ND	104	63.7-140	1.53	27.4	
Trichloroethene	47.9	2.00	pt	50.0	ND	95.8	47.2-131	0.832	40	
Trichlorofluoromethane	38.3	2.00)1	50.0	ND	76.6	10.8-150	11.3	40	
Vinyl acetate	128	2.00	63	100	ND	128	10-150	0.00	40	
Vinyl chloride	48.5	2.00	.,	50.0	ND	97.0	13-150	9.43	40	
Total Xylenes	144	4.00	U	150	ND	96.0	45.9-146	5.41	40	
Surrogate: Dibromofluoromethane	51.1		"	50.0		102	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	50.5		"	50.0		101	61.2-141			
Surrogate: Toluene-d8	51.6		n	50.0		103	75.8-118			
Surrogate: 4-Bromofluorobenzene	52.1		**	50.0		104	68.9-123			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson, Project Manager

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604201

Reported: 04/24/06 11:00

Notes and Definitions

QC The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source

method acceptance criteria.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

L This quality control measurement is below the laboratory established limit.

H This quality control measurement is above the laboratory established limit.

The laboratory is not NELAP accredited for this analyte by the indicated matrix and method.

The State of Illinois Accrediting Authority does not offer NELAP accreditation for this analyte by the indicated matrix and method.

Note: All analytes, by matrix and method, are accredited following current NELAP standards unless specifically noted by way of a qualifier listed above.

TestAmerica--Buffalo Grove, IL Wisconsin DNR Certification Lab ID: 999917160
TestAmerica--Buffalo Grove, IL NELAP Primary Accreditation: Illinois #100261

TestAmerica--Buffalo Grove, IL NELAP Secondary Accreditation: New Jersey #IL001

TestAmerica--Nashville, TN NELAP Secondary Accreditation: Illinois #200010 TestAmerica--Dayton, OH NELAP Secondary Accreditation: Illinois #200008

TestAmerica--Watertown, WI NELAP Primary Accreditation: Illinois #100453

TestAmerica--Watertown, WI Wisconsin DNR Certification Lab ID: 128053530

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Andy Johnson, Project Manager

Page 8 of 8

9 Received by: (lab) 700 REOUESTED SAMPLE ANALYSIS Organic Carbon Content by ASTM 2974-87 M Page Printed Name PRESERVATIVE Signature Soan 1 Metals 6010B/7000A *Jasiullod Qinoing lateT A000T/E0103 * siniaM ANDA inoT 90-21-47 Relinquished by: 2. Pesticides by 8081A **5CBs py 8082 2AOC? PÀ 8510C** fignature: **AOCs by 5035/8260B** Date 01E8 vd 2AM9 BLEX by 5035/8260B BTEX by 5035/8021 Received by: 2. Wet Weight Containers 3-40ml Number of and Size Janson gnature: * Run metal analyses using methods with lowest reporting limit needed to meet TACO water Sample Matrix MUSTARDI PLATT ENVIRONMENTAL - CHAIN OF CUSTODY $\langle i, m \rangle$ 5 200 Reporting: Dry Weight Relinquished by: 1. Sample Collection ことととしてい 1635 ZAMA Date: Time Phase Project Manager: - 6 07 82 1 PROJECT INFORMATION 4-13-06 Sample Collection Date Condition of Sample Containers: COMMENTS Weas to background concentrations and remediation objectives. 1520 Kensington Road, Suite 204, Oak Brook, Illinois 60523-2139 #10 2 wk. MPA Sample Point ID JMN 5 Janson 4 Received by: 1. chain 4 Company 5 X 1 wk. Sach no & Phone: 630-993-2100 Fax: 630-993-9017 gnature: 7.06: 48 hr. 2402 Purchase Order Number: 184/885 MAL Subcontracted Laboratory Sample ID Relinquished by 24 hr. Project Number: Collector: Delivered Via: Project Name: PICASE Sob-ACla K Printed Name TAT: [Sample

Phone: (847) 808-7766 Fax: (847) 808-7772

27 April 2006

Lab ID: B604205

Kim Janson Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

RE: Sachnoff & Weaver Phase II

Enclosed are the results of analyses for samples received by the laboratory on 04/14/06. The sample results relate only to the tested analytes of interest and to the sample as received by the laboratory. At the time of analysis, the laboratory was in compliance with current NELAP standards and held accreditation for all analyses performed unless noted by a qualifier. The laboratory's Illinois NELAP accreditation number is 100261.

This report can not be reproduced, except in full, without written approval from the laboratory. If you have any questions concerning this report, please feel free to contact Jim Knapp or Margaret Kniest.

Sincerely,

TestAmerica Analytical Testing Corporation

Julie Meyer

Laboratory Director

James Knapp

Quality Assurance Manager

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604205

Reported: 04/27/06 14:02

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GP-11 (0-2)	B604205-01	Soil	04/14/06 14:12	04/14/06 16:30
GP-11 (4-6)	B604205-02	Soil	04/14/06 14:18	04/14/06 16:30
GP-11 (12-14)	B604205-03	Soil	04/14/06 14:39	04/14/06 16:30
Trip Blank	B604205-04	Water	04/14/06 00:00	04/14/06 16:30

Sample Receipt Notes

Please note that the chain of custody (COC) included with this report is considered part of the report. The data user should review any comments or notes made on the COC. Any receipt issues found by the laboratory that are not noted on the COC will be stated below.

All sample container custody seals are intact.

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

& Reviewed :Annroved by

Margaret Kniest, Project Manager

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson

Lab ID: B604205

Reported: 04/27/06 14:02

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-11 (0-2) (B604205-01) Soil	Sampled: 04/14/06 14:12	Receive	d: 04/14/06	16:30					QC
Acetone	ND	22.0	ug/kg dry	I	6040412	04/20/06	04/21/06	EPA 8260B	
Benzene	ND	4.40	n	Ħ	#	ч	II	n	
Bromodichloromethane	ND	4.40	U	**	tī.	**	U	U	
Bromoform	ND	4.40	u u	**	н	**	o	"	
Bromomethane	ND	4.40	u	**	**	**	u u	"	
2-Butanone	ND	8.81	ii.	n	11	**	**	II.	
Carbon disulfide	ND	4.40	27	**	17	**	e e	н	
Carbon tetrachloride	ND	4.40	24	11	u	ŧŧ	**	n	
Chlorobenzene	ND	4.40	**	D	D	**	**	ч	
Chlorodibromomethane	ND	4.40	11	11	n	n	พ	**	
Chloroethane	ND	4.40	**	n	n	n	11	11	
Chloroform	5.89	4.40	17	n	U	"	11	**	
Chloromethane	ND	4.40	**	n	u	u	11	"	
1,2-Dichloroethane	10.1	4.40	н		U	n	Ħ	n	
cis-1,2-Dichloroethene	ND	4.40	н	· ·	**	n	n	n	
trans-1,2-Dichloroethene	ND	4.40	**	U	,,	0	14	17	
1,2-Dichloropropane	ND	4.40	n	n	**	n	37)+	
1,3-Dichloropropene (cis + trans	ND	2.64	11		**	u	11	H	
Ethylbenzene	ND	4.40	17	и	**	н	19)7	
2-Hexanone	ND	8.81	**	ш	Ħ	u u	D.	"	
Methylene chloride	ND	4.40	11	**	**	н	1+	0	
4-Methyl-2-pentanone	ND	8.81	D	41	**	н	D	n	
Methyl tert-butyl ether	ND	4.40	n	es	н	tı	13	b	
Styrene	ND	4.40	v	ŢĬ	н	**	U	u	
1,1,2,2-Tetrachloroethane	ND	4.40	,,	11	**	**	11	n	
Tetrachloroethene	ND	4.40	0	††	H	11	U	u	
Toluene	ND	4.40	u	TT	n	11	U	u	
1,1,2-Trichloroethane	20.3	4.40		11	n	11	0	n	
Trichloroethene	17.9	4.40		TT	**	H	**	n	
Trichlorofluoromethane	ND	4.40	u	77	17	n	Ħ	11	
Vinyl acetate	ND	8.81	U	71	11	n	n	n	
Vinyl chloride	ND	4.40	U	77	n	11	n	u	
Total Xylenes	ND	8.81	U	**	"	"	tt.	н	
Surrogate: Dibromofluorometha.		94.5 %	55.9-	150	rf	łs	jt.	**	
Surrogate: 1,2-Dichloroethane-a		115 %	47.5-	150	n	÷r.	•	11	
Surrogate: Toluene-d8	•	105 %	55.4-		"	**	,	,,	
Surrogate: 4-Bromofluorobenzer	ie	100 %	40.4-	137	н	**	n	11	

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by

« Margaret Knied

Margaret Kniest, Project Manager

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project Number: M061401 Project Manager: Kim Janson Lab ID: B604205

Reported: 04/27/06 14:02

Volatile Organic Compounds by EPA Method 8260B

TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-11 (0-2) (B604205-01RE2) Soil	Sampled: 04/14/06	14:12 Rec	ceived: 04/	14/06 16:3	10				QC
1,1-Dichloroethane	963	301	ug/kg dry	50	6040412	04/20/06	04/27/06	EPA 8260B	
1,1-Dichloroethene	716	301	15	1)	11	11	10	U	
1,1,1-Trichloroethane	10800	301	#	Ħ	n	11	Ħ	n	
Surrogate: Dibromofluoromethane		99.7 %	40.7-	150	"	11	n	,,	
Surrogate: 1,2-Dichloroethane-d4		148 %	44.3-	150	H	н	p	**	
Surrogate: Toluene-d8		120 %	48.7-	150	**	n	p	"	
Surrogate: 4-Bromofluorobenzene		87.8 %	36.6-	147	p	"	"	,,	
GP-11 (12-14) (B604205-03RE1) Soil	Sampled: 04/14/	06 14:39 F	Received: 0)4/14/06 1 0	5:30				QC
Acetone	ND	20.5	ug/kg dry	1	6040412	04/20/06	04/23/06	EPA 8260B	
Benzene	ND	4.10	n	u	ti .	11	n	ti	
Bromodichloromethane	ND	4.10	17	n	"	17	II.	u	
Bromoform	ND	4.10	н	"	U	**	10	u	
Bromomethane	ND	4.10	n	o	17	FT	15	n	
2-Butanone	ND	8.21	н	n	u	17	11	n .	
Carbon disulfide	ND	4.10	*	**	H	77	11	n	
Carbon tetrachloride	ND	4.10	#	н	**	11	**	**	
Chlorobenzene	ND	4.10	**	h	**	ti	17	**	
Chlorodibromomethane	ND	4.10	u	h	#	п	ıı	Ħ	
Chloroethane	ND	4.10	"	n	н	"	U	11	
Chloroform	ND	4.10	"	**	11	u		74	
Chloromethane	ND	4.10	**		**	u	U	**	
1,1-Dichloroethane	ND	4.10	11	n	**	u	"	4	
1,2-Dichloroethane	ND	4.10	11	υ	"	o o	n	u	
1,1-Dichloroethene	ND	4.10	H	n	"	0	10	u	
cis-1,2-Dichloroethene	ND	4.10	Ħ	**	0	H	**	u	
trans-1,2-Dichloroethene	ND	4.10	77	11	· ·	H.	**	u	
1,2-Dichloropropane	ND	4.10	#1	в	D	н	11		
1,3-Dichloropropene (cis + trans)	ND	2.46	11	Ħ	n	##	**	11	
Ethylbenzene	ND	4.10	"	"	n	m	**	17	
2-Hexanone	ND	8.21	11	11	**	7*	u	Ħ	
Methylene chloride	ND	4.10	n	Ħ	•	**	я	**	
4-Methyl-2-pentanone	ND	8.21	U	*1	11	tt	U	11	
Methyl tert-butyl ether	ND	4.10	1)	**	11	(1	n	**	
Styrene	ND	4.10	n		*	(1	n	a	
1,1,2,2-Tetrachloroethane	ND	4.10	n		0	u	D	D.	
Tetrachloroethene	ND	4.10	**	n	u	u	n	n	
Toluene	ND	4.10	n	**	D	1)	ù	R	
1,1,1-Trichloroethane	ND	4.10	**	*	h;	13	**	II.	
1.1.2-Trichloroethane	ND	4.10	11	н	n	D	n	n	
Trichloroethene	ND	4.10	**	**	н	11	**	**	
Trichlorofluoromethane	ND	4.10	u	**	n	17	**	**	
1110moroitaoromediane	110	7.10							

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Project Manager

Page 3 of 17

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project Number: M061401 Project Manager: Kim Janson Lab ID: B604205

Reported: 04/27/06 14:02

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

		Reporting		5 31 - 3	n	D ,	4 3	N 6-43 - 3	Nt
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-11 (12-14) (B604205-03RE1) Soil	Sampled: 04/14/	/06 14:39 F	Received: (4/14/06 1	6:30				QC
Vinyl acetate	ND	8.21		1	6040412	04/20/06	04/23/06	EPA 8260B	
Vinyl chloride	ND	4.10	99 91	11	u	D D	u n	tt tr	
Total Xylenes	ND	8.21							
Surrogate: Dibromofluoromethane		103 %	55.9		"	"	*	,,	
Surrogate: 1,2-Dichloroethane-d4		116%	47.5		"	n n	n	u p	
Surrogate: Toluene-d8		101 %	55.4		,,	"	,,	,,	
Surrogate: 4-Bromofluorobenzene		92.9 %	40.4	-13/		,			
Trip Blank (B604205-04) Water Sa	impled: 04/14/06 0	0:00 Recei	ved: 04/14	/06 16:30					QC
Acetone	ND	10.0	ug/l	ı	6040385	04/19/06	04/20/06	EPA 8260B	
Benzene	ND	2.00	n	0	lt.	**	tr	н	
Bromodichloromethane	ND	2.00	ū	Ħ	"	n	U	ęi	
Bromoform	ND	1.00	11	"	u	H	**	**	
Bromomethane	ND	2.00	**	**	u	"	11	71	
2-Butanone	ND	10.0	**	Ħ	a	u	n	n	
Carbon disulfide	ND	2.00	**	#1	**	n	Ħ	11	
Carbon tetrachloride	ND	2.00	**	11	**	11	72	11	
Chlorobenzene	ND	2.00	D.	**	11	"	**	H	
Chlorodibromomethane	ND	2.00	n	PT PS	#1 PT	"	b†	11	
Chloroethane	ND	2.00	11	,,	PT		"	11	
Chloroform	ND	2.00	"	.,	.,	**	,,	"	
Chloromethane	ND	2.00	"	11		,,			
1,1-Dichloroethane	ND	2.00	"	.,	if	н	0	41	
1,2-Dichloroethane	ND	2.00 2.00	11	.,	.,	11	U	н	
1,1-Dichloroethene	ND ND	2.00	,,		.,	*	**	n	
cis-1,2-Dichloroethene	ND ND	2.00	") •	**	11	
trans-1,2-Dichloroethene 1,2-Dichloropropane	ND ND	2.00	**	Ħ	u	1)	**	Ħ	
1,3-Dichloropropene (cis + trans)	ND	2.00	#1	н	*1	"	*1	b.	
Ethylbenzene	ND	2.00	ţ#	**	**	u	**	h	
2-Hexanone	ND	10.0	ir	**	\$1	v	**	n	
Methylene chloride	ND	2.00	n	**	15	11	**	11	
4-Methyl-2-pentanone	ND	10.0	11	**	**	**	bŢ	19	
Methyl tert-butyl ether	ND	2.00	p	11	**	+1		11	
Styrene	ND	2.00	11		n	**	U	9	
1,1,2,2-Tetrachloroethane	ND	2.00	и	n	n	n	u		
Tetrachloroethene	ND	2.00	u	p	v	H	u	U	
Toluene	ND	2.00	n		"	n	• 11	я	
1,1,1-Trichloroethane	ND	2.00	v		"	"	U	**	
1,1,2-Trichloroethane	ND	2.00	e		D	11	U	N	
Trichloroethene	ND	2.00	11	u		"	**	**	
Trichlorofluoromethane	ND	2.00	"	11		"	†1	n	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Project Manager

Page 4 of 17

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental

Project: Sachnoff & Weaver Phase II

1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project Number: M061401 Project Manager: Kim Janson Lab ID: B604205

Reported: 04/27/06 14:02

Volatile Organic Compounds by EPA Method 8260B TestAmerica Analytical - Buffalo Grove

		porting				_			
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Trip Blank (B604205-04) Water	Sampled: 04/14/06 00:00	Receiv	ed: 04/14	/06 16:30					QC
Vinyl acetate	ND	2.00	ug/l	1	6040385	04/19/06	04/20/06	EPA 8260B	
Vinyl chloride	ND	2.00	n	**	Ħ	**	71	**	
Total Xylenes	ND	4.00		H	17	В	†1	11	·
Surrogate: Dibromofluoromethane		93.2 %	69.8	-133	"	r	"	P	
Surrogate: 1,2-Dichloroethane-d4		96.8 %	61.2	-141	ď	tt	"	"	
Surrogate: Toluene-d8		100 %	75.8	-118	**	19	*	**	
Surrogate: 4-Bromofluorobenzene	:	99.2 %	68.9	-123	"	и	tt	#	

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by:

Wargaret Kniest, Project Manager

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604205

Reported: 04/27/06 14:02

Percent Solids

TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
GP-11 (0-2) (B604205-01) Soil	Sampled: 04/14/06 14:12	Received	l: 04/14/0	6 16:30					
% Solids	83.1	0.200	%	i	6040331	04/17/06	04/18/06	EPA 5035 7.5	
GP-11 (12-14) (B604205-03) Soi	il Sampled: 04/14/06 14:	39 Receiv	ed: 04/1/	4/06 16:30					
% Solids	88.3	0.200	%	1	6040301	04/17/06	04/17/06	EPA 5035 7.5	

TestAmerica Analytical - Buffalo Grove

& Reviewed

by: Margaret Kniest, Project Manager

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401

Lab ID: B604205

Project Manager: Kim Janson

Reported: 04/27/06 14:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 6040385 -	· EPA	5030B	(P/T)
			-

Back 0040303 - E1 A 3030B (1717				D 1 01/10/07 A . 1 1 01/20/07
Blank (6040385-BLK1)) 11°	100		Prepared: 04/19/06 Analyzed: 04/20/06
Acetone	ND	10.0	ug/l	
Benzene	ND	2.00	0	
Bromodichloromethane	ND	2.00		
Bromoform	ND	1.00		
Bromomethane	ND	2.00		
2-Butanone	ND	10.0	н	
Carbon disulfide	ND	2.00	n	
Carbon tetrachloride	ND	2.00	31	
Chlorobenzene	ND	2.00	"	
Chlorodibromomethane	ND	2.00	ţı	
Chloroethane	ND	2.00	Ħ	
Chloroform	ND	2.00	Ħ	
Chloromethane	ND	2.00	*1	
1,1-Dichloroethane	ND	2.00	11	
1,2-Dichloroethane	ND	2.00	*1	
1,1-Dichloroethene	ND	2.00	**	
cis-1,2-Dichloroethene	ND	2.00	**	
trans-1,2-Dichloroethene	ND	2.00	**	
1,2-Dichloropropane	ND	2.00	**	
1,3-Dichloropropene (cis + trans)	ND	2.00	##	
Ethylbenzene	ND	2.00	Ħ	
2-Hexanone	ND	10.0	11	
Methylene chloride	ND	2.00	11	
4-Methyl-2-pentanone	ND	10.0	**	
Methyl tert-butyl ether	ND	2.00	**	
Styrene	ND	2.00	77	
1,1,2,2-Tetrachloroethane	ND	2.00	**	
Tetrachloroethene	ND	2.00	"	
Toluene	ND	2.00	17	
1,1,1-Trichloroethane	ND	2.00	71	
1,1,2-Trichloroethane	ND	2.00	17	
Trichloroethene	ND	2.00	11	,
Trichlorofluoromethane	ND	2.00	11	
Vinyl acetate	ND	2.00	"	
Vinyl chloride	ND	2.00	11	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Project Manager

Page 7 of 17

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604205

Reported: 04/27/06 14:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040385 - EPA 5030B (P/T)										
Blank (6040385-BLK1)				Prepared:	04/19/06	Analyzed	1: 04/20/06			
Total Xylenes	ND	4.00	ug/l							
Surrogate: Dibromofluoromethane	48.2		"	50.0		96.4	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	49.9		n	50.0		99.8	61.2-141			
Surrogate: Toluene-d8	50.8		"	50.0		102	75.8-118			
Surrogate: 4-Bromofluorobenzenc	49.1		**	50.0		98.2	68.9-123			
LCS (6040385-BS1)				Prepared:	04/19/06	Analyzed	1: 04/21/06			
Acetone	114	10.0	ug/l	100		114	10-150			
Benzene	49.9	2.00	u	50.0		99.8	66-127			
Bromodichloromethane	53.3	2.00	u	50.0		107	70.2-136			
Bromoform	50.7	1.00	Ħ	50.0		101	44.6-150			
Bromomethane	65.4	2.00	**	50.0		131	10-150			
2-Butanone	100	10.0	p	100		100	10-150			
Carbon disulfide	104	2.00	,,	100		104	10-150			
Carbon tetrachloride	42.1	2.00	n	50.0		84.2	56.1-137			
Chlorobenzene	49.8	2.00	ч	50.0		99.6	75.3-123			
Chlorodibromomethane	54.3	2.00	**	50.0		109	66.5-140			
Chloroethane	66.8	2.00	***	50.0		134	30.4-150			
Chloroform	55.1	2.00	**	50.0		110	64.5-135			
Chloromethane	54.0	2.00	H	50.0		801	22-150			
1,1-Dichloroethane	56.7	2.00	"	50.0		113	57.6~140			
1,2-Dichloroethane	52.2	2.00	u	50.0		104	62-142			
1,1-Dichloroethene	51.1	2.00		50.0		102	49.4-128			
cis-1,2-Dichloroethene	54.4	2.00	*1	50.0		109	69.2-134			
trans-1,2-Dichloroethene	53.0	2.00	**	50.0		106	57.6-135			
1,2-Dichloropropane	51.7	2.00	**	50.0		103	67.5-132			
1,3-Dichloropropene (cis + trans)	85.4	2.00	n	100		85.4	66.2-137			
Ethylbenzene	48.4	2.00	"	50.0		96.8	69.5-129			
2-Hexanone	50.0	10.0	u	100		50.0	10-150			
Methylene chloride	53.3	2.00	"	50.0		107	43.2-150			
4-Methyl-2-pentanone	106	10.0	•	100		106	27.2-150			
Methyl tert-butyl ether	56.4	2.00	*1	50.0		113	66.8-141			
Styrene	50.9	2.00	11	50.0		102	65.6-134			
1.1.2.2-Tetrachloroethane	38.9	2.00	n	50.0		77.8	56-146			
Tetrachloroethene	47.6	2.00	D	50.0		95.2	61.9-133			
Toluene	48.0	2.00	v	50.0		96.0	70.5-123			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Project Manager

Page 8 of 17

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604205

Reported: 04/27/06 14:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Prepared: 04/19/06 Analyzed: 04/21/06 Analyze		D 1:	Reporting Limit	11-14-	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
CS (6040385-BS1)	Analyte	Result	Limit	Omis	Level	Nesun	761414	Limits	1017		110103
1,1 Trichlorocthane	Batch 6040385 - EPA 5030B (P/T)										
Trichloroethane	LCS (6040385-BS1)				Prepared:	04/19/06					
		50.4	2.00	-	50.0		101	60.1-137			
Interlate 10.2 2.00 " 50.0 11.5 47.2-150	1,1,2-Trichloroethane	54.0	2.00	D	50.0		108	77-132			
Vinyl acetate	Trichloroethene	56.2	2.00	**	50.0		112	65.3-132			
Viryl chloride	Frichlorofluoromethane	57.3	2.00	11	50.0		115	47.2-150			
Potal Xylenes	/inyl acetate	37.5	2.00	11	100		37.5	10-150			
Surrogate: Dibromofluoromethane 54.3 " 50.0 109 69.8-133 100.0 109 69.8-133 100.0 109 69.8-133 100.0 109 69.8-133 100.0 109 69.8-133 100.0 109 69.8-133 100.0 109 68.9-123 100.0 109 68.9-123 100.0 109 68.9-123 100.0 109 68.9-123 100.0 109 68.9-123 100.0 100 68.9-123 100.0 100 68.9-123 100.0 100 68.9-123 100.0 100 68.9-123 100.0 100 68.9-123 100.0 100 68.9-123 100.0 100 68.9-123 100.0 100 68.9-123 100.0 100 68.9-123 100.0 100 68.9-123 100.0 100 68.9-123 100.0 100 68.9-123 100.0 100 68.9-123 100.0 100 68.9-123 100.0 100 68.9-123 100.0 100.	Vinyl chloride	52.7	2.00	17	50.0		105	39.1-150			
Surrogate: Dibromofiluoronichinale 34.3 30.0 101 61.2-141 Surrogate: Dibromofiluoronichinale 31.4 30.0 103 73.8-118 Surrogate: Toluene-d8 31.4 30.0 103 73.8-118 Surrogate: Toluene-d8 31.4 30.0 101 68.9-123 Surrogate: A-Bromofiluorobenzene 30.4 30.0 ug/1 100 ND 108 10-150 Surrogate: Solution 108 10.0 ug/1 100 ND 108 10-150 Surrogate: Solution 108 10.0 ug/1 100 ND 108 10-150 Surrogate: Solution 108 10.0 ug/1 100 ND 103 63-141 Surrogate: Solution 108 10.0 ug/1 100 ND 103 63-141 Surrogate: Solution 108 10.0 ug/1 100 ND 103 63-141 Surrogate: Solution 108 10.0 ug/1 100 ND 103 63-141 Surrogate: Solution 108 10.0 ug/1 100 ND 103 63-141 Surrogate: Solution 108 10.0 ug/1 100 ND 103 63-141 Surrogate: Solution 108 10.0 ug/1 100 ND 103 63-141 Surrogate: Solution 109 100 ND 103 63-141 Surrogate: Solution 109 100 ND 103 63-141 Surrogate: Solution 109 100 ND 105 10-150 Surrogate: Solution 109 ND 105 10-150 Surrogate: Solution 100 ND 100 100 10-150 Surrogate: Solution 100 ND 100 100 100-150 Surrogate: Solution 100 ND 100 100 100-150 Surrogate: Solution 100 ND 100 100 100-150 Surrogate: Solution 100 ND 100 100 100 100 Surrogate: Solution 100 100 100 100 100 Surrogate: Solution 100 ND 100 100 100	Total Xylenes	152	4.00		150		101	64.4-131			
Source 1.2-Dichloroethane-d4 50.4	urrogate: Dibromofluoromethane	54.3		**	50.0		109	69.8-133			
Natrix Spike (6040385-MS1) Source: B604192-03RE1 Prepared: 04/19/06 Analyzed: 04/23/06 Acatone 108 10.0 ug/l 100 ND 108 10-150 Acatone 50.4 2.00 50.0 ND 101 54.8-135 Acatone 51.5 2.00 50.0 ND 103 63-141 36-141		50.4			50.0		101	61.2-141			
Matrix Spike (6040385-MIS1) Source: B604192-03RE1 Prepared: 04/19/06 Analyzed: 04/23/06 Acetone 108 10.0 ug/1 100 ND 108 10-150 Benzene 50.4 2.00 " 50.0 ND 101 54.8-135 Bromodichloromethane 51.5 2.00 " 50.0 ND 103 63-141 Bromoform 45.6 1.00 " 50.0 ND 91.2 39.2-150 Bromomethane 76.7 2.00 " 50.0 ND 153 10-150 Bromomethane 105 10.0 " 100 ND 105 10-150 Carbon disulfide 108 2.00 " 50.0 ND 105 10-150 Carbon disulfide 43.2 2.00 " 50.0 ND 86.4 50.4-138 Chlorobenzene 49.2 2.00 " 50.0 ND 98.4 69.5-127 Chlorodibromomethane 50.3 2.00 " 50.0 ND 104 18.3-150 Chlorodibromomethane 52.2 2.00 " 50.0 ND 104 18.3-150 Chloroform 52.8 2.00 " 50.0 ND 106 54.1-142 Chloromethane 53.7 2.00 " 50.0 ND 106 54.1-142 Chloromethane 54.8 2.00 " 50.0 ND 100 55.5-147 1,1-Dichloroethane 50.2 2.00 " 50.0 ND 100 55.5-147 1,1-Dichloroethene 51.4 2.00 " 50.0 ND 102 36.2-135 cis-1,2-Dichloroethene 51.2 2.00 " 50.0 ND 102 36.2-135 cis-1,2-Dichloroethene 51.2 2.00 " 50.0 ND 103 53.1-146 ctrans-1,2-Dichloroethene 51.2 2.00 " 50.0 ND 102 60.6-137 1,2-Dichloropropane 51.2 2.00 " 50.0 ND 101 62.8-133 2-Hexanone 47.1 10.0 " 10.0 ND 47.1 11.6-148	Surrogate: Toluene-d8	51.4									
108	urrogate: 4-Bromofluorobenzene	50.4		"	50.0		101	68.9-123			
Rectone 108 10.0 ug/l 100 ND 108 10-150 Benzene 50.4 2.00 " 50.0 ND 101 54.8-135 Bromodichloromethane 51.5 2.00 " 50.0 ND 103 63-141 Bromoform 45.6 1.00 " 50.0 ND 91.2 39.2-150 Bromomethane 76.7 2.00 " 50.0 ND 105 10-150 Bromomethane 105 10.0 " 100 ND 105 10-150 Bromomethane 108 2.00 " 100 ND 108 10-150 Bromomethane 49.2 2.00 " 50.0 ND 98.4 69.5-127 Chlorobenzene 49.2 2.00 " 50.0 ND 98.4 69.5-127 Chlorodibromomethane 50.3 2.00 " 50.0 ND 101 61.9-141 Chlorothane 52.2 2.00 " 50.0 ND 104 18.3-150 Chlorothane 53.7 2.00 " 50.0 ND 106 54.1-142 Chloromethane 50.2 2.00 " 50.0 ND 106 54.1-142 Chloromethane 50.2 2.00 " 50.0 ND 100 55.5-147 (,1-Dichlorothane 50.8 2.00 " 50.0 ND 100 55.5-147 (,1-Dichlorothane 50.8 2.00 " 50.0 ND 100 55.5-147 (,1-Dichlorothene 50.8 2.00 " 50.0 ND 100 55.5-147 (,1-Dichlorothene 51.4 2.00 " 50.0 ND 102 36.2-135 iis-1,2-Dichlorothene 55.2 2.00 " 50.0 ND 103 53.1-146 rans-1,2-Dichlorothene 55.2 2.00 " 50.0 ND 101 53.7-131 (,2-Dichlorothene 55.2 2.00 " 50.0 ND 102 60.6-137 (,3-Dichloropropane 61.2 2.00 " 50.0 ND 101 62.8-133 chlybenzene 50.6 2.00 " 50.0 ND 101 62.8-133 chlybenzene 47.1 10.0 " 100 ND 47.1 11.6-148	Matrix Spike (6040385-MS1)	Sou	rce: B60419	92-03RE1	Prepared	: 04/19/06	Analyze	d: 04/23/06	***************************************		·
Stemene		108	10.0	ug/l	100	ND	108	10-150			
Stromotention Stromotentio	Benzene	50.4	2.00	,,	50.0	ND	101	54.8-135			
1.00 1.00	Bromodichloromethane	51.5	2.00	U	50.0	ND	103	63-141			
Palutanone	Bromoform	45.6	1.00	#1	50.0	ND	91.2	39.2-150			
105 100	Bromomethane	76.7	2.00	Ħ	50.0	ND	153	10-150			Н
103 2.00 100	2-Butanone	105	10.0	**	100	ND	105	10-150			
2.00	Carbon disulfide	108	2.00	11	100	ND	108	10-150			
Chlorodibromomethane 50.3 2.00 50.0 ND 101 61.9-141 Chloroethane 52.2 2.00 50.0 ND 104 18.3-150 Chloroform 52.8 2.00 50.0 ND 106 54.1-142 Chloromethane 53.7 2.00 50.0 ND 106 54.1-142 Chloromethane 54.8 2.00 50.0 ND 110 51.9-141 1.2-Dichloroethane 50.2 2.00 50.0 ND 100 55.5-147 1.1-Dichloroethane 50.8 2.00 50.0 ND 100 55.5-147 1.1-Dichloroethane 50.8 2.00 50.0 ND 100 55.5-147 1.1-Dichloroethane 50.8 2.00 50.0 ND 102 36.2-135 cis-1,2-Dichloroethane 51.4 2.00 50.0 ND 103 53.1-146 crans-1,2-Dichloroethane 55.2 2.00 50.0 ND 100 53.7-131 1.2-Dichloropropane 51.2 2.00 50.0 ND 100 ND 101 62.8-133 2-Hexanone 47.1 10.0 ND 47.1 11.6-148	Carbon tetrachloride	43.2	2.00	1)	50.0	ND	86.4	50.4-138			
Shorodifformmethane Solution Solution	Chlorobenzene	49.2	2.00	u	50.0	ND	98.4	69.5-127			
Chloroform 52.8 2.00 " 50.0 ND 106 54.1-142 Chloromethane 53.7 2.00 " 50.0 2.62 102 19.1-150 1,1-Dichloroethane 54.8 2.00 " 50.0 ND 110 51.9-141 1,2-Dichloroethane 50.2 2.00 " 50.0 ND 100 55.5-147 1,1-Dichloroethane 50.8 2.00 " 50.0 ND 102 36.2-135 1,1-Dichloroethene 51.4 2.00 " 50.0 ND 103 53.1-146 1,2-Dichloroethene 55.2 2.00 " 50.0 ND 103 53.1-146 1,2-Dichloroethene 55.2 2.00 " 50.0 ND 110 53.7-131 1,2-Dichloropropane 51.2 2.00 " 50.0 ND 102 60.6-137 1,3-Dichloropropane 51.2 2.00 " 50.0 ND 102 60.6-137 1,3-Dichloropropene (cis + trans) 98.4 2.00 " 100 ND 98.4 16.7-150 Ethylbenzene 50.6 2.00 " 50.0 ND 101 62.8-133 2-Hexanone 47.1 10.0 " 100 ND 47.1 11.6-148	Chlorodibromomethane	50.3	2.00	u	50.0	ND	101	61.9-141			
Chloromethane 53.7 2.00 " 50.0 2.62 102 19.1-150 1,1-Dichloroethane 54.8 2.00 " 50.0 ND 110 51.9-141 1,1-Dichloroethane 50.2 2.00 " 50.0 ND 100 55.5-147 1,1-Dichloroethene 50.8 2.00 " 50.0 ND 102 36.2-135 25.1-12-Dichloroethene 51.4 2.00 " 50.0 ND 103 53.1-146 1,2-Dichloroethene 55.2 2.00 " 50.0 ND 110 53.7-131 1,2-Dichloroethene 51.2 2.00 " 50.0 ND 102 60.6-137 1,3-Dichloropropane 51.2 2.00 " 50.0 ND 102 60.6-137 1,3-Dichloropropene (cis + trans) 98.4 2.00 " 100 ND 98.4 16.7-150 Ethylbenzene 50.6 2.00 " 50.0 ND 101 62.8-133 2-Hexanone	Chloroethane	52.2	2.00	Ħ	50.0	ND	104	18.3-150			
Chloromethane 53.7 2.00 " 50.0 2.62 102 19.1-150 1,1-Dichloroethane 54.8 2.00 " 50.0 ND 110 51.9-141 1,2-Dichloroethane 50.2 2.00 " 50.0 ND 100 55.5-147 1,1-Dichloroethane 50.8 2.00 " 50.0 ND 102 36.2-135 1,2-Dichloroethene 51.4 2.00 " 50.0 ND 103 53.1-146 1,2-Dichloroethene 55.2 2.00 " 50.0 ND 110 53.7-131 1,2-Dichloroptopane 51.2 2.00 " 50.0 ND 102 60.6-137 1,3-Dichloropropane 60.6 2.00 " 100 ND 98.4 16.7-150 1,3-Dichloropropane 50.6 2.00 " 50.0 ND 101 62.8-133 2-Hexanone 47.1 10.0 " 100 ND 47.1 11.6-148 1,16-148 1.00 " 100 ND 100 ND 100		52.8	2.00	11	50.0	ND	106	54.1-142			
1,1-Dichloroethane		53.7	2.00	11	50.0	2.62	102	19.1-150			
1,2-Dichloroethane 50.2 2.00 50.0 ND 100 55.5-147 1,1-Dichloroethene 50.8 2.00 50.0 ND 102 36.2-135 1,2-Dichloroethene 51.4 2.00 50.0 ND 103 53.1-146 1,2-Dichloroethene 55.2 2.00 50.0 ND 110 53.7-131 1,2-Dichloropropane 51.2 2.00 50.0 ND 102 60.6-137 1,3-Dichloropropane 60.6 2.00 100 ND 98.4 16.7-150 1,3-Dichloropropane 50.6 2.00 50.0 ND 101 62.8-133 2-Hexanone 47.1 10.0 100 ND 47.1 11.6-148 1,2-Dichloropropane 50.6 2.00 50.0 ND 47.1 11.6-148 3,3-Dichloropropane 50.0 ND 50.0 ND 47.1 11.6-148 3,3-Dichloropropane 50.0 ND 50.0 ND 47.1 11.6-148 3,3-Dichloropropane 50.0 ND 47.1 11.6-148 3,3-Dichloropropane 50.0 ND 50.0 ND 47.1 11.6-148 3,3-Dichloropropane 50.0 ND 50.0 ND 47.1 11.6-148 3,3-Dichloropropane 50.0 ND 50.		54.8	2.00	н	50.0	ND	110	51.9-141			
1,1-Dichloroethene 50.8 2.00 " 50.0 ND 102 36.2-135 cis-1,2-Dichloroethene 51.4 2.00 " 50.0 ND 103 53.1-146 crans-1,2-Dichloroethene 55.2 2.00 " 50.0 ND 110 53.7-131 1,2-Dichloropropane 51.2 2.00 " 50.0 ND 102 60.6-137 1,3-Dichloropropene (cis + trans) 98.4 2.00 " 100 ND 98.4 16.7-150 Ethylbenzene 50.6 2.00 " 50.0 ND 101 62.8-133 2-Hexanone 47.1 10.0 " 100 ND 47.1 11.6-148	•	50.2	2.00	D	50.0	ND	100	55.5-147			
Sistential Control C	· • · ·	50.8	2.00	n	50.0	ND	102	36.2-135			
1,2-Dichloroethene 55.2 2.00 50.0 ND 110 53.7-131 1,2-Dichloropropane 51.2 2.00 50.0 ND 102 60.6-137 1,3-Dichloropropene (cis + trans) 98.4 2.00 100 ND 98.4 16.7-150 Ethylbenzene 50.6 2.00 50.0 ND 101 62.8-133 2-Hexanone 47.1 10.0 100 ND 47.1 11.6-148 2-10	<i>'</i>	51.4	2.00	**	50.0	ND	103	53.1-146			
1,2-Dichloropropane 51.2 2.00 50.0 ND 102 60.6-137 1,3-Dichloropropene (cis + trans) 98.4 2.00 100 ND 98.4 16.7-150 2,4-Dichloropropene (cis + trans) 98.4 2.00 100 ND 101 62.8-133 2,4-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 2,4-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,5-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,6-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,6-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,6-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,7-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,7-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,8-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,8-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,8-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,8-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,8-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,8-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,8-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,8-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,8-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,8-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,8-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,8-Dichloropropene (cis + trans) 98.4 2.00 100 ND 47.1 11.6-148 3,8-Dichloropropene (cis + trans) 98.4 2.00 100 ND 2.00 3,8-Dichloropropene (cis + trans) 98.4 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00			2.00	**	50.0	ND	110	53.7-131			
i,3-Dichloropropene (cis + trans) 98.4 2.00 100 ND 98.4 16.7-150 Ethylbenzene 50.6 2.00 50.0 ND 101 62.8-133 2-Hexanone 47.1 10.0 100 ND 47.1 11.6-148			2.00	51	50.0	ND	102	60.6-137			
Ethylbenzene 50.6 2.00 " 50.0 ND 101 62.8-133 2-Hexanone 47.1 10.0 " 100 ND 47.1 11.6-148	• •		2.00	**	100	ND	98.4	16.7-150			
2-Hexanone 47.1 10.0 " 100 ND 47.1 11.6-148				D	50.0	ND	101	62.8-133			
200 11 200 110 100 23.0 150	· ·			u	100	ND	47.1	11.6-148			
	Methylene chloride	53.2	2.00	n	50.0	ND	106				

TestAmerica Analytical - Buffalo Grove

Reviewed & Margaret Lowest

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

proved by:

Margaret Kniest, Project Manager

Page 9 of 17

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604205

Reported: 04/27/06 14:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040385 - EPA 5030B (P/T)					*****			****		,,
Matrix Spike (6040385-MS1)	So	urce: B604192	2-03RE1	Prepared:	04/19/06	Analyzed	: 04/23/06			
4-Methyl-2-pentanone	100	10.0	ug/l	100	ND	100	12.1-150			
Methyl tert-butyl ether	53.1	2.00	n	50.0	ND	106	52.6-150			
Styrene	48.9	2.00	n	50.0	ND	97.8	48.8-144			
1,1,2,2-Tetrachloroethane	49.8	2.00	Ħ	50.0	ND	99.6	56.8-150			
Tetrachloroethene	49.5	2.00	11	50.0	ND	99.0	50.8-136			
Toluene	48.3	2.00	Ħ	50.0	0.510	95.6	57.9-131			
1,1,1-Trichloroethane	48.7	2.00	n	50.0	2.79	91.8	53.3-137			
1,1,2-Trichloroethane	52.6	2.00	н	50.0	ND	105	63.7-140			
Trichloroethene	48.3	2.00	Ħ	50.0	ND	96.6	47.2-131			
Trichlorofluoromethane	42.9	2.00	IP.	50.0	ND	85.8	10.8-150			
Vinyl acetate	128	2.00	n	100	ND	128	10-150			
Vinyl chloride	53.3	2.00	n	50.0	ND	107	13-150			
Total Xylenes	152	4.00	H	150	ND	101	45.9-146			
Surrogate: Dibromofluoromethane	52.7		п	50.0		105	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	50.8		**	50.0		102	61.2-141			
Surrogate: Toluene-d8	52.0		,,	50.0		104	75.8-118			
Surrogate: 4-Bromofluorobenzene	51.7		"	50.0		103	68.9-123			
Matrix Spike Dup (6040385-MSD1)	So	urce: B604192	2-03RE1	Prepared:	04/19/06	Analyzed	1: 04/23/06			
Acetone	96.1	10.0	ug/l	100	ND	96.1	10-150	11.7	40	
Benzene	50.4	2.00	v	50.0	ND	101	54.8-135	0.00	31.9	
Bromodichloromethane	50.7	2.00	O.	50.0	ND	101	63-141	1.57	28.2	
Bromoform	44.5	1.00	"	50.0	ND	89.0	39.2-150	2.44	29.3	
Bromomethane	59.2	2.00	"	50.0	ND	118	10-150	25.8	40	
2-Butanone	95.5	0.01	u	100	ND	95.5	10-150	9.48	40	
Carbon disulfide	101	2.00	1)	100	ND	101	10-150	6.70	40	
Carbon tetrachloride	42.6	2.00	ų.	50.0	ND	85.2	50.4-138	1.40	35.1	
Chlorobenzene	48.6	2.00	*	50.0	ND	97.2	69.5-127	1.23	38.4	
Chlorodibromomethane	49.1	2.00	0	50.0	ND	98.2	61.9-141	2.41	29.3	
Chloroethane	50.6	2.00		50.0	ND	101	18.3-150	3.11	40	
Chloroform	50.4	2.00	u	50.0	ND	101	54.1-142	4.65	29.1	
Chloromethane	51.7	2.00	"	50.0	2.62	98.2	19.1-150	3.80	40	
1,1-Dichloroethane	52.2	2.00	**	50.0	ND	104	51.9-141	4.86	27.6	
1,2-Dichloroethane	49.9	2.00	а	50.0	ND	99.8	55.5-147	0.599	25.2	
1,1-Dichloroethene	46.6	2.00	0	50.0	ND	93.2	36.2-135	8.62	33.3	
cis-1,2-Dichloroethene	49.1	2.00	U	50.0	ND	98.2	53.1-146	4.58	29.2	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Project Manager

Page 10 of 17

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604205

Reported: 04/27/06 14:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	1100411								***************************************	
Batch 6040385 - EPA 5030B (P/T)										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Matrix Spike Dup (6040385-MSD1)	Sou	rce: B60419		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
trans-1,2-Dichloroethene	51.0	2.00	սք/l	50.0	ND	102	53.7-131	7.91	32	
1,2-Dichloropropane	50.7	2.00	17	50.0	ND	101	60.6-137	0.981	26.8	
1,3-Dichloropropene (cis + trans)	96.8	2.00	"	100	ND	96.8	16.7-150	1.64	40	
Ethylbenzene	49.0	2.00	п	50.0	ND	98.0	62.8-133	3.21	40	
2-Hexanone	46.5	10.0	**	100	ND	46.5	11.6-148	1.28	40	
Methylene chloride	45.3	2.00	**	50.0	ND	90.6	33.8-150	16.0	36.8	
4-Methyl-2-pentanone	98.0	10.0	н	100	ND	98.0	12.1-150	2.02	40	
Methyl tert-butyl ether	50.0	2.00	IT	50.0	ND	100	52.6-150	6.01	40	
Styrene	47.8	2.00		50.0	ND	95.6	48.8-144	2.28	40	
1,1,2,2-Tetrachloroethane	49.4	2.00	n	50.0	ND	98.8	56.8-150	0.806	25	
Tetrachloroethene	48.1	2.00	0	50.0	ND	96.2	50.8-136	2.87	40	
Toluene	47.1	2.00	**	50.0	0.510	93.2	57.9-131	2.52	38.7	
1,1,1-Trichloroethane	47.0	2.00	11	50.0	2.79	88.4	53.3-137	3.55	38.2	
1,1,2-Trichloroethane	51.8	2.00	D	50.0	ND	104	63.7-140	1.53	27.4	
Trichloroethene	47.9	2.00	u	50.0	ND	95.8	47.2-131	0.832	40	
Trichlorofluoromethane	38.3	2.00	n	50.0	ND	76.6	10.8-150	11.3	40	
Vinyl acetate	128	2.00	**	100	ND	128	10-150	0.00	40	
Vinyl chloride	48.5	2.00	**	50.0	ND	97.0	13-150	9.43	40	
Total Xylenes	144	4.00	w	150	ND	96.0	45.9-146	5.41	40	
Surrogate: Dibromofluoromethane	51.1		**	50.0	***************************************	102	69.8-133			
Surrogate: 1,2-Dichloroethane-d4	50.5		"	50.0		101	61.2-141			
Surrogate: Toluene-d8	51.6		n	50.0		103	75.8-118			
Surrogate: 4-Bromofluorobenzene	52.1		,,	50.0		104	68.9-123			
Batch 6040412 - EPA 5035B [P/T]										
Blank (6040412-BLK1)				Prepared	04/20/06	Analyze	d: 04/21/06			
Acetone	ND	25.0	ug/kg wet							
Benzene	ND	5.00	**							
		* 00								

Blank (6040412-BLK1)			w
Acetone	ND	25.0	ug/kg wet
Benzene	ND	5.00	**
Bromodichloromethane	ND	5.00	**
Bromoform	ND	5.00	11
Bromomethane	ND	5.00	**
2-Butanone	ND	10.0	и
Carbon disulfide	ND	5.00	,,
Carbon tetrachloride	ND	5.00	
Chlorobenzene	ND	5.00	11

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Project Manager

Page 11 of 17

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604205

Reported: 04/27/06 14:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040412 - EPA 5035B [P/T]										
Blank (6040412-BLK1)				Prepared:	04/20/06	Analyzed	: 04/21/06			
Chlorodibromomethane	ND	5.00	ug/kg wet							
Chloroethane	ND	5.00	Ħ							
Chloroform	ND	5.00	*							
Chloromethane	ND	5.00	n							
1,1-Dichloroethane	ND	5.00	"							
1,2-Dichloroethane	ND	5.00	u							
1,1-Dichloroethene	ND	5.00	Ħ							
cis-1,2-Dichloroethene	ND	5.00	31							
trans-1.2-Dichloroethene	ND	5.00	H							
1,2-Dichloropropane	ND	5.00	n							
1,3-Dichloropropene (cis + trans)	ND	3.00	n							
Ethylbenzene	ND	5.00	"							
2-Hexanone	ND	10.0	**							
Methylene chloride	ND	5.00	11							
4-Methyl-2-pentanone	ND	10.0	н							
Methyl tert-butyl ether	ND	5.00	11							
Styrene	ND	5.00	**							
1,1,2,2-Tetrachloroethane	ND	5.00	"							
Tetrachloroethene	ND	5.00	"							
Toluene	ND	5.00	a							
1,1,1-Trichloroethane	ND	5.00	41							
1,1,2-Trichloroethane	ND	5.00	Ħ							
Trichloroethene	ND	5.00	n							
Trichlorofluoromethane	ND	5.00	11							
Vinyl acetate	ND	10.0	n							
Vinyl chloride	ND	5.00	n							
Total Xylenes	ND	10.0	u							
Surrogate: Dibromofluoromethane	45.2		,,	50.0		90.4	55.9-150			
Surrogate: 1,2-Dichloroethane-d4	54.4		**	50.0		109	47.5-150			
Surrogate: Tolucne-d8	51.5		,,	50.0		103	55.4-145			
Surrogate: 4-Bromofluorobenzene	50.6		**	50.0		101	40.4-137			

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Project Manager

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604205

Reported: 04/27/06 14:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040412 - EPA 5035B [P/T]										
LCS (6040412-BS1)				Prepared:	04/20/06	Analyzed	1: 04/21/06			
Acetone	138	25.0	ug/kg wet	100		138	10-150			
Benzene	44.9	5.00	#1	50.0		89.8	54.8-130			
Bromodichloromethane	46.2	5.00	**	50.0		92.4	55.7-137			
Bromoform	45.4	5.00	14	50.0		90.8	48.6-150			
Bromomethane	55.0	5.00	n	50.0		110	10-150			
2-Butanone	97.6	10.0	n	100		97.6	10-150			
Carbon disulfide	105	5.00	n	100		105	10-150			
Carbon tetrachloride	39.2	5.00	"	50.0		78.4	43.4-141			
Chlorobenzene	42.3	5.00	n	50.0		84.6	56.2-127			
Chlorodibromomethane	46.9	5.00	U	50.0		93.8	54.1-142			
Chloroethane	83.9	5.00	Ħ	50.0		168	10-150			Н
Chloroform	51.0	5.00	#1	50.0		102	53.7-135			
Chloromethane	52.3	5.00	11	50.0		105	12.4-150			
1,1-Dichloroethane	52.4	5.00	11	50.0		105	47.4-139			
1,2-Dichloroethane	46.3	5.00	H	50.0		92.6	54.6-140			
1,1-Dichloroethene	50.6	5.00	н	50.0		101	35.5-135			
cis-1,2-Dichloroethene	49.5	5.00	н	50.0		99.0	52.5-136			
trans-1,2-Dichloroethene	51.7	5.00	n	50.0		103	47.8-133			
1,2-Dichloropropane	43.9	5.00	"	50.0		87.8	68.3-124			
1,3-Dichloropropene (cis + trans)	79.4	3.00	v	100		79.4	60.9-140			
Ethylbenzene	43.2	5.00	n	50.0		86.4	50.7-127			
2-Hexanone	51.8	10.0	0	001		51.8	10-150			
Methylene chloride	58.8	5.00	n	50.0		118	25.4-150			
4-Methyl-2-pentanone	111	10.0	"	100		111	10-150			
Methyl tert-butyl ether	49.6	5.00	11	50.0		99.2	47.3-150			
Styrene	38.8	5.00	11	50.0		77.6	48.3-127			
1,1,2,2-Tetrachloroethane	47.5	5.00	17	50.0		95.0	30.4-150			
Tetrachloroethene	42.3	5.00	31	50.0		84.6	46.7-131			
Toluene	42.2	5.00	17	50.0		84.4	53.6-127			
1,1,1-Trichloroethane	48.1	5.00	D	50.0		96.2	49.3-136			
1,1,2-Trichloroethane	48.9	5.00	**	50.0		97.8	57.2-146			
Trichloroethene	43.8	5.00	**	50.0		87.6	55-128			
Trichlorofluoromethane	55.9	5.00		50.0		112	10-150			
Vinyl acetate	56.2	10.0	u	100		56.2	10-150			
- 						100	20 1 100			

5.00

54.0

50.0

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

28.4-150

108

Reviewed & Approved by:

Vinyl chloride

Margaret Kniest, Project Manager

Page 13 of 17

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139 Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson Lab ID: B604205

Reported: 04/27/06 14:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040412 - EPA 5035B [P/T]										
LCS (6040412-BS1)				Prepared:	04/20/06	Analyzed	I: 04/21/06			
Total Xylenes	129	10.0	ug/kg wet	150		86.0	43.1-136			
Surrogate: Dibromofluoromethane	59.5		25	50.0		119	55.9-150			
Surrogate: 1,2-Dichloroethane-d4	57.0		<i>**</i>	50.0		114	47.5-150			
Surrogate: Toluene-d8	52.0		H	50.0		104	55.4-145			
Surrogate: 4-Bromofluorobenzene	53.1		"	50.0		106	40.4-137			
LCS Dup (6040412-BSD1)				Prepared:	04/20/06	Analyzeo	1: 04/21/06			
Acetone	141	25.0	ug/kg wet	100		141	10-150	2.15	35	
Benzene	46.2	5.00	17	50.0		92.4	54.8-130	2.85	35	
Bromodichloromethane	48.4	5.00	**	50.0		96.8	55.7-137	4.65	31.6	
Bromoform	46.6	5.00	n	50.0		93.2	48.6-150	2.61	35	
Bromomethane	61.6	5.00	"	50.0		123	10-150	11.3	35	
2-Butanone	99.6	10.0	n	100		99.6	10-150	2.03	35	
Carbon disulfide	105	5.00	0	100		105	10-150	0.00	35	
Carbon tetrachloride	40.2	5.00	**	50.0		80.4	43.4-141	2.52	35	
Chlorobenzene	43.8	5.00	11	50.0		87.6	56.2-127	3.48	35	
Chlorodibromomethane	47.8	5.00	"	50.0		95.6	54.1-142	1.90	34	
Chloroethane	83.7	5.00	**	50.0		167	10-150	0.239	35	Н
Chloroform	51.3	5.00	17	50.0		103	53.7-135	0.587	32.2	
Chloromethane	53.7	5.00	v	50.0		107	12.4-150	2.64	35	
1.1-Dichloroethane	52.8	5.00	U	50.0		901	47.4-139	0.760	35	
1,2-Dichloroethane	47.3	5.00	u	50.0		94.6	54.6-140	2.14	31.5	
1,1-Dichloroethene	49.6	5.00	*1	50.0		99.2	35.5-135	2.00	35	
cis-1,2-Dichloroethene	49.6	5.00	**	50.0		99.2	52.5-136	0.202	32.9	
trans-1,2-Dichloroethene	52.1	5.00	##	50.0		104	47.8-133	0.771	35	
1,2-Dichloropropane	46.6	5.00	**	50.0		93.2	68.3-124	5.97	27.4	
1,3-Dichloropropene (cis + trans)	83.0	3.00	11	100		83.0	60.9-140	4.43	35	
Ethylbenzene	45.1	5.00	11	50.0		90.2	50.7-127	4.30	35	
2-Hexanone	54.5	10.0	10	100		54.5	10-150	5.08	35	
Methylene chloride	57.4	5.00	u	50.0		115	25.4-150	2.41	35	
4-Methyl-2-pentanone	115	10.0		100		115	10-150	3.54	35	
Methyl tert-butyl ether	49.4	5.00	11	50.0		98.8	47.3-150	0.404	35	
Styrene	39.8	5.00	11	50.0		79.6	48.3-127	2.54	35	
1,1,2,2-Tetrachloroethane	47.3	5.00	17	50.0		94.6	30.4-150	0.422	35	
Tetrachloroethene	43.8	5.00	n	50.0		87.6	46.7-131	3.48	35	
Toluene	44.5	5.00	34	50.0		89.0	53.6-127	5.31	35	

TestAmerica Analytical - Buffalo Grove

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reviewed & Approved by:

Margaret Kniest, Project Manager

argaret Knied

Page 14 of 17

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Project: Sachnoff & Weaver Phase II

Project Number: M061401

Lab ID: B604205

Oak Brook, IL 60523-2139

Project Manager: Kim Janson

Reported: 04/27/06 14:02

Volatile Organic Compounds by EPA Method 8260B - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040412 - EPA 5035B [P/T]										
LCS Dup (6040412-BSD1)				Prepared:	04/20/06	Analyzed	i: 04/21/06			
1,1,1-Trichloroethane	48.8	5.00	ug/kg wet	50.0		97.6	49.3-136	1.44	35	
1,1,2-Trichloroethane	50.5	5.00	**	50.0		101	57.2-146	3.22	30.2	
Trichloroethene	46.2	5.00	**	50.0		92.4	55-128	5.33	35	
Trichlorofluoromethane	55.8	5.00	"	50.0		112	10-150	0.179	35	
Vinyl acetate	61.3	10.0	0	100		61.3	10-150	8.68	35	
Vinyl chloride	57.5	5.00	"	50.0		115	28.4-150	6.28	35	
Total Xylenes	136	10.0	D	150		90.7	43.1-136	5.28	35	
Surrogate: Dibromofluoromethane	57.2		25	50.0		114	55.9-150			
Surrogate: 1,2-Dichloroethane-d4	57.6		**	50.0		115	47.5-150			
Surrogate: Toluene-d8	52.6		"	50.0		105	55.4-145			
Surrogate: 4-Bromofluorobenzene	52.9		ų	50.0		106	40.4-137			

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by:

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204

Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kirn Janson

Lab ID: B604205

Reported: 04/27/06 14:02

Percent Solids - Quality Control TestAmerica Analytical - Buffalo Grove

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6040301 - General Prep										
Blank (6040301-BLK1)				Prepared &	& Analyzo	ed: 04/17/0)6			
% Solids	ND	0.200	%							***************************************
Blank (6040301-BLK2)				Prepared d	& Analyze	ed: 04/17/0)6			
% Solids	ND	0.200	%			***************************************		·····		·····
Duplicate (6040301-DUP1)	Sour	ce: B60419	9-03	Prepared &	& Analyze	ed: 04/17/0	16			
% Solids	86.9	0.200	%		86.2		***************************************	0.809	20	····
Duplicate (6040301-DUP2)	Sour	ce: B60419	9-04	Prepared &	& Analyze	ed: 04/17/0)6			
% Solids	79.5	0.200	%		79.2		·	0.378	20	
Batch 6040331 - General Prep										
Blank (6040331-BLK1)				Prepared:	04/17/06	Analyzed:	04/18/06			
% Solids	ND	0.200	%		***************************************	·····			***************************************	-
Blank (6040331-BLK2)				Prepared:	04/17/06	Analyzed:	04/18/06			
% Solids	ND	0.200	%						***************************************	
Duplicate (6040331-DUP1)	Sour	ce: B60417	5-09	Prepared:	04/17/06	Analyzed:	04/18/06			
% Solids	86.8	0.200	°/0		88.6			2.05	20	***************************************
Duplicate (6040331-DUP2)	Sour	ce: B60420:	5-01	Prepared:	04/17/06	Analyzed:	04/18/06			
% Solids	83.0	0.200	0/0		83.1			0.120	20	

TestAmerica Analytical - Buffalo Grove

Reviewed & Approved by:

: Margaret Knied

Margaret Kniest, Project Manager

Phone: (847) 808-7766 Fax: (847) 808-7772

Mostardi Platt Environmental 1520 Kensington Road Suite 204 Oak Brook, IL 60523-2139

Project: Sachnoff & Weaver Phase II

Project Number: M061401 Project Manager: Kim Janson

Lab ID: B604205

Reported: 04/27/06 14:02

Notes and Definitions

QC The result for one or more quality control measurements associated with this sample did not meet the laboratory and/or source

method acceptance criteria,

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

Sample results reported on a dry weight basis dry

RPD Relative Percent Difference

L This quality control measurement is below the laboratory established limit.

Н This quality control measurement is above the laboratory established limit.

The laboratory is not NELAP accredited for this analyte by the indicated matrix and method.

The State of Illinois Accrediting Authority does not offer NELAP accreditation for this analyte by the indicated matrix and method.

Note: All analytes, by matrix and method, are accredited following current NELAP standards unless specifically noted by way of a qualifier listed above.

TestAmerica--Buffalo Grove, IL Wisconsin DNR Certification Lab ID: 999917160

TestAmerica-Buffalo Grove, IL NELAP Primary Accreditation: Illinois #100261

TestAmerica--Buffalo Grove, IL NELAP Secondary Accreditation: New Jersey #IL001

TestAmerica--Nashville, TN NELAP Secondary Accreditation: Illinois #200010

TestAmerica--Dayton, OH NELAP Secondary Accreditation: Illinois #200008

TestAmerica--Watertown, WI NELAP Primary Accreditation: Illinois #100453

TestAmerica--Watertown, WI Wisconsin DNR Certification Lab ID: 128053530

TestAmerica Analytical - Buffalo Grove

Approved by:

9 50-Ò Received by: (lab) Date: 209 REQUESTED SAMPLE ANALYSIS Organic Carbon Content by ASTM 2974-87 Page / Printed Name: Laboratory: Signature: PRESERVATIVE Metals 6010B/7000A *Included Thority Pollutant A0007/80103 Total RCRA Metals * Relinquished by: 2. Pesticides by 8081A Time: Date: PCBs by 8082 2AOC² P³ 8530C Printed Name: AOCs by 5035/8260B Signature: 0168 vd 2AN9 B1EX by 5035/8260B [M.30] O 王 BTEX by 5035/8021 Received by: 2, Wet Weight Printed Name: Unly I Containers Number of 3 Engrand 1 40ml and Size Signature MILANCA Company * Run metal analyses using methods with lowest reporting limit needed to meet TACO Sample Matrix 250 MUSTARDI PLATT ENVIRONMENTAL - CHAIN OF CUSTODY Fime: 75.70 Dry Weight Relinquished by: 1. Collection) :: -4:34 Sample Тіте 14:0 Project Manager: PROJECT INFORMATION いるかものと 4-Wedner Phase 11 Signature: 9/14/18 Sample Collection Reporting: Сотрапу: Condition of Sample Containers: COMMENTS background concentrations and remediation objectives. 1520 Kensington Road, Suite 204, Oak Brook, Minois 60523-2139 2 wk. 12-14 15 Sept 7-0 MPA Sample Received by: 1. Point 1D BC. P. Wash 95] 48 hr. [] ZJwk. Ŷ, Company: 7.1 J Phone: 630-993-2100 Fax: 630-993-9017 106140 Project Name: Such Mand MSTO Purchase Order Number: Survive: S.G Subcontracted Laboratory Sample ID Relinquished by AN JANGIA C Project Number: 1000 C] 24 hr. Collector: Delivered Via: Sample Temp: TAT: